Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
code
Size:
100M - 1B
License:
import gzip | |
import multiprocessing | |
import os | |
import shutil | |
import time | |
from argparse import Namespace | |
from collections import Counter | |
import numpy as np | |
from datasets import load_dataset, utils | |
import re | |
from huggingface_hub import Repository | |
from multiprocessing import Pool | |
from tqdm import tqdm | |
# Settings | |
config = { | |
"dataset_name": "./data/github", | |
"num_workers": 96, | |
"line_max": 1000, | |
"out_path": "./data/github-code", | |
"repo_name": "github-code", | |
"org": "lvwerra", | |
"shard_size": 1000 << 20} | |
args = Namespace(**config) | |
PATTERN = re.compile(r'\s+') | |
def hash_func(text): | |
return hashlib.md5(re.sub(PATTERN, '', text).encode("utf-8")).hexdigest() | |
def get_hash(example): | |
"""Get hash of content field.""" | |
return {"hash": hash_func(example["content"])} | |
def line_stats(example): | |
"""Calculates mean and max line length of file.""" | |
line_lengths = [len(line) for line in example["content"].splitlines()] | |
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)} | |
def alpha_stats(example): | |
"""Calculates mean and max line length of file.""" | |
alpha_frac = np.mean([c.isalnum() for c in example["content"]]) | |
return {"alpha_frac": alpha_frac} | |
def check_uniques(example, uniques): | |
"""Check if current hash is still in set of unique hashes and remove if true.""" | |
if example["hash"] in uniques: | |
uniques.remove(example["hash"]) | |
return True | |
else: | |
return False | |
def is_autogenerated(example, scan_width=5): | |
"""Check if file is autogenerated by looking for keywords in the first few lines of the file.""" | |
keywords = ["auto-generated", "autogenerated", "automatically generated"] | |
lines = example["content"].splitlines() | |
for _, line in zip(range(scan_width), lines): | |
for keyword in keywords: | |
if keyword in line.lower(): | |
return {"autogenerated": True} | |
else: | |
return {"autogenerated": False} | |
def preprocess(example): | |
"""Chain all preprocessing steps into one function to not fill cache.""" | |
results = dict() | |
results.update(get_hash(example)) | |
results.update(line_stats(example)) | |
return results | |
def filter(example, uniques, args): | |
"""Filter dataset with heuristics.""" | |
if not check_uniques(example, uniques): | |
return False | |
elif example["line_max"] > args.line_max: | |
return False | |
else: | |
return True | |
def save_shard(shard_tuple): | |
"""Save shard""" | |
filename, shard = shard_tuple | |
shard.to_parquet(filename) | |
# Load dataset | |
t_start = time.time() | |
ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20) | |
print(f"Time to load dataset: {time.time()-t_start:.2f}") | |
# Run preprocessing | |
t_start = time.time() | |
ds = ds.map(preprocess, num_proc=args.num_workers) | |
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") | |
print(ds) | |
# Deduplicate hashes | |
uniques = set(ds.unique("hash")) | |
frac = len(uniques) / len(ds) | |
print(f"Fraction of duplicates: {1-frac:.2%}") | |
# Deduplicate data and apply heuristics | |
t_start = time.time() | |
ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) | |
ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"]) | |
print(f"Time to filter dataset: {time.time()-t_start:.2f}") | |
print(f"Size of filtered dataset: {len(ds)}") | |
# Save dataset in repo | |
repo = Repository( | |
local_dir=args.out_path, | |
clone_from=args.org + "/" + args.repo_name, | |
repo_type="dataset", | |
private=True, | |
use_auth_token=True, | |
git_user="lvwerra", | |
git_email="[email protected]", | |
) | |
os.mkdir(args.out_path + "/data") | |
if ds._indices is not None: | |
dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data) | |
else: | |
dataset_nbytes = ds.data.nbytes | |
num_shards = int(dataset_nbytes / args.shard_size) + 1 | |
print(f"Number of shards: {num_shards}") | |
t_start = time.time() | |
shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards)) | |
filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards)) | |
with Pool(16) as p: | |
list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards)) | |
print(f"Time to save dataset: {time.time()-t_start:.2f}") | |
# To push to hub run `git add/commit/push` inside dataset repo folder |