Datasets:

Modalities:
Text
Formats:
json
Languages:
French
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
File size: 2,079 Bytes
75c402b
4115ad5
 
 
75c402b
 
 
 
 
c24d9fa
 
10bc098
 
19661cc
c24d9fa
4115ad5
 
19661cc
75c402b
 
 
 
 
 
 
77f7e27
 
 
75c402b
 
 
9915006
 
 
 
 
 
 
 
 
 
 
 
77f7e27
 
 
 
 
 
 
 
 
 
75c402b
 
 
 
7503cb7
 
 
 
 
 
 
 
 
 
 
 
 
75c402b
 
 
19661cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
dataset_info:
splits:
    - name: test
task_categories:
- question-answering
language:
- fr
pretty_name: Syntec dataset for information retrieval
configs:
- config_name: documents
  data_files:
    - split: test
      path: documents.json
- config_name: queries
  data_files:
    - split: test
      path: queries.json
---
# Syntec dataset for information retrieval

This dataset has been built from the Syntec Collective bargaining agreement. Its purpose is information retrieval.

## Dataset Details

The dataset is rather small. It is intended to be used only as a test set, for fast evaluation of models.

It is split into 2 subsets :
- **queries** : it features 100 manually created questions. Each question is mapped to the article that contains the answer.
- **documents** : corresponds to the 90 articles from the collective bargaining

### Usage

```py
import datasets

# Download the documents (corpus)
corpus_raw = datasets.load_dataset("lyon-nlp/mteb-fr-retrieval-syntec-s2p", "documents")

# Download the queries
queries_raw = datasets.load_dataset("lyon-nlp/mteb-fr-retrieval-syntec-s2p", "queries")
```

### Dataset Description

The collective bargaining agreement is applicable to employees of Technical Design Offices, Consulting Engineering Firms and Consulting Companies.

The dataset contains 100 questions, each having their answer in 1 of the 90 articles of the documents. The dataset was manually annotated. It's small size allows for quick prototyping.

- **Curated by:** Wikit AI (https://www.wikit.ai/)
- **Language(s) (NLP):** French
- **License:** [More Information Needed]

### Dataset Sources

https://www.syntec.fr/

### Citation
If you use this dataset in your work, please consider citing:
```
@misc{ciancone2024extending,
      title={Extending the Massive Text Embedding Benchmark to French}, 
      author={Mathieu Ciancone and Imene Kerboua and Marion Schaeffer and Wissam Siblini},
      year={2024},
      eprint={2405.20468},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

### Contact

mathieu@wikit.ai
marion@wikit.ai