prompt
stringlengths
94
42.6k
completion
stringlengths
6
120
api
stringlengths
14
68
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"), M.Elemwise("RELU"), ] def forward(self, a, b): x = self.modules[0](a, b) y = self.modules[1](a, b) assert list(self.modules[2].keys()) == ["a", "b"] for _, m in self.modules[2].items(): y = m(x, y) for m in self.modules[3:]: y = m(y) return y class MyModule4(M.Module): def __init__(self): super().__init__() self.add = F.add def forward(self, x, y): return self.add(x, y) def test_trace_module(): enable_expr_checker() x = Tensor(1) m1 = MyModule1() tm1 = trace_module(m1, x) m2 = MyModule2() tm2 = trace_module(m2, x) inp = Tensor(2) gt = m1(inp) output = tm1(inp) for a, b in zip(output, gt): np.testing.assert_equal(a.numpy(), b.numpy()) gt1 = m2(inp) output1 = tm2(inp) for a, b in zip(output1, gt1): np.testing.assert_equal(a.numpy(), b.numpy()) a, b =
Tensor(1)
megengine.Tensor
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"), M.Elemwise("RELU"), ] def forward(self, a, b): x = self.modules[0](a, b) y = self.modules[1](a, b) assert list(self.modules[2].keys()) == ["a", "b"] for _, m in self.modules[2].items(): y = m(x, y) for m in self.modules[3:]: y = m(y) return y class MyModule4(M.Module): def __init__(self): super().__init__() self.add = F.add def forward(self, x, y): return self.add(x, y) def test_trace_module(): enable_expr_checker() x = Tensor(1) m1 = MyModule1() tm1 = trace_module(m1, x) m2 = MyModule2() tm2 = trace_module(m2, x) inp = Tensor(2) gt = m1(inp) output = tm1(inp) for a, b in zip(output, gt): np.testing.assert_equal(a.numpy(), b.numpy()) gt1 = m2(inp) output1 = tm2(inp) for a, b in zip(output1, gt1): np.testing.assert_equal(a.numpy(), b.numpy()) a, b = Tensor(1),
Tensor(2)
megengine.Tensor
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [
M.Elemwise("ADD")
megengine.module.Elemwise
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"),
M.Elemwise("ADD")
megengine.module.Elemwise
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]),
M.Elemwise("RELU")
megengine.module.Elemwise
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"),
M.Elemwise("RELU")
megengine.module.Elemwise
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"), M.Elemwise("RELU"), ] def forward(self, a, b): x = self.modules[0](a, b) y = self.modules[1](a, b) assert list(self.modules[2].keys()) == ["a", "b"] for _, m in self.modules[2].items(): y = m(x, y) for m in self.modules[3:]: y = m(y) return y class MyModule4(M.Module): def __init__(self): super().__init__() self.add = F.add def forward(self, x, y): return self.add(x, y) def test_trace_module(): enable_expr_checker() x = Tensor(1) m1 = MyModule1() tm1 = trace_module(m1, x) m2 = MyModule2() tm2 = trace_module(m2, x) inp = Tensor(2) gt = m1(inp) output = tm1(inp) for a, b in zip(output, gt): np.testing.assert_equal(a.numpy(), b.numpy()) gt1 = m2(inp) output1 = tm2(inp) for a, b in zip(output1, gt1): np.testing.assert_equal(a.numpy(), b.numpy()) a, b = Tensor(1), Tensor(2) m3 = MyModule3() gt = m3(a, b) tm3 = trace_module(m3, a, b) out = tm3(a, b) np.testing.assert_equal(out.numpy(), gt.numpy()) assert isinstance(tm3.modules.__dict__["0"], M.Elemwise) assert isinstance(tm3.modules.__dict__["2"], TracedModule) assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise) assert isinstance(tm3.modules.__dict__["3"], M.Elemwise) m4 = MyModule4() tm4 = trace_module(m4, a, b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, x=a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, x=a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) assert len(tm4.graph._exprs) == 1 assert isinstance(tm4.graph._exprs[0], CallFunction) class MyModule5(Module): def __init__(self): super().__init__() self.m1 = tm4 def forward(self, x, y): return self.m1(x, y) tm6 = trace_module(MyModule5(), a, b) assert tm6.m1.argspec is None assert tm6.m1._is_top is False def test_trace_module_2(): class Model(M.Module): def __init__(self): super().__init__() def forward(self, x): out = x.shape out = apply(
builtin.Elemwise(mode="ADD")
megengine.core.ops.builtin.Elemwise
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"), M.Elemwise("RELU"), ] def forward(self, a, b): x = self.modules[0](a, b) y = self.modules[1](a, b) assert list(self.modules[2].keys()) == ["a", "b"] for _, m in self.modules[2].items(): y = m(x, y) for m in self.modules[3:]: y = m(y) return y class MyModule4(M.Module): def __init__(self): super().__init__() self.add = F.add def forward(self, x, y): return self.add(x, y) def test_trace_module(): enable_expr_checker() x = Tensor(1) m1 = MyModule1() tm1 = trace_module(m1, x) m2 = MyModule2() tm2 = trace_module(m2, x) inp = Tensor(2) gt = m1(inp) output = tm1(inp) for a, b in zip(output, gt): np.testing.assert_equal(a.numpy(), b.numpy()) gt1 = m2(inp) output1 = tm2(inp) for a, b in zip(output1, gt1): np.testing.assert_equal(a.numpy(), b.numpy()) a, b = Tensor(1), Tensor(2) m3 = MyModule3() gt = m3(a, b) tm3 = trace_module(m3, a, b) out = tm3(a, b) np.testing.assert_equal(out.numpy(), gt.numpy()) assert isinstance(tm3.modules.__dict__["0"], M.Elemwise) assert isinstance(tm3.modules.__dict__["2"], TracedModule) assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise) assert isinstance(tm3.modules.__dict__["3"], M.Elemwise) m4 = MyModule4() tm4 = trace_module(m4, a, b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, x=a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, x=a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) assert len(tm4.graph._exprs) == 1 assert isinstance(tm4.graph._exprs[0], CallFunction) class MyModule5(Module): def __init__(self): super().__init__() self.m1 = tm4 def forward(self, x, y): return self.m1(x, y) tm6 = trace_module(MyModule5(), a, b) assert tm6.m1.argspec is None assert tm6.m1._is_top is False def test_trace_module_2(): class Model(M.Module): def __init__(self): super().__init__() def forward(self, x): out = x.shape out = apply(builtin.Elemwise(mode="ADD"), out,
Tensor(1)
megengine.Tensor
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"), M.Elemwise("RELU"), ] def forward(self, a, b): x = self.modules[0](a, b) y = self.modules[1](a, b) assert list(self.modules[2].keys()) == ["a", "b"] for _, m in self.modules[2].items(): y = m(x, y) for m in self.modules[3:]: y = m(y) return y class MyModule4(M.Module): def __init__(self): super().__init__() self.add = F.add def forward(self, x, y): return self.add(x, y) def test_trace_module(): enable_expr_checker() x = Tensor(1) m1 = MyModule1() tm1 = trace_module(m1, x) m2 = MyModule2() tm2 = trace_module(m2, x) inp = Tensor(2) gt = m1(inp) output = tm1(inp) for a, b in zip(output, gt): np.testing.assert_equal(a.numpy(), b.numpy()) gt1 = m2(inp) output1 = tm2(inp) for a, b in zip(output1, gt1): np.testing.assert_equal(a.numpy(), b.numpy()) a, b = Tensor(1), Tensor(2) m3 = MyModule3() gt = m3(a, b) tm3 = trace_module(m3, a, b) out = tm3(a, b) np.testing.assert_equal(out.numpy(), gt.numpy()) assert isinstance(tm3.modules.__dict__["0"], M.Elemwise) assert isinstance(tm3.modules.__dict__["2"], TracedModule) assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise) assert isinstance(tm3.modules.__dict__["3"], M.Elemwise) m4 = MyModule4() tm4 = trace_module(m4, a, b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, x=a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, x=a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) assert len(tm4.graph._exprs) == 1 assert isinstance(tm4.graph._exprs[0], CallFunction) class MyModule5(Module): def __init__(self): super().__init__() self.m1 = tm4 def forward(self, x, y): return self.m1(x, y) tm6 = trace_module(MyModule5(), a, b) assert tm6.m1.argspec is None assert tm6.m1._is_top is False def test_trace_module_2(): class Model(M.Module): def __init__(self): super().__init__() def forward(self, x): out = x.shape out = apply(builtin.Elemwise(mode="ADD"), out, Tensor(1)) return out traced_model = trace_module(Model(), Tensor(([1,]))) assert isinstance(traced_model.graph._exprs[0], Apply) and isinstance( traced_model.graph._exprs[0].opdef, builtin.GetVarShape ) assert isinstance(traced_model.graph._exprs[1], Constant) assert isinstance(traced_model.graph._exprs[2], Apply) and isinstance( traced_model.graph._exprs[2].opdef, builtin.Elemwise ) assert int(traced_model(
Tensor([1, 2])
megengine.Tensor
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a",
M.Elemwise("ADD")
megengine.module.Elemwise
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b",
M.Elemwise("ADD")
megengine.module.Elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret =
mgb.opr.matrix_mul(inp, weight, transposeB=True)
megengine._internal.opr.matrix_mul
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp =
mgb.opr.mark_no_broadcast_elemwise(inp)
megengine._internal.opr.mark_no_broadcast_elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros =
mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph)
megengine._internal.make_immutable
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones =
mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph)
megengine._internal.make_immutable
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return
mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph)
megengine._internal.opr.eye
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return
mgb.opr.matrix_mul(inp1, inp2)
megengine._internal.opr.matrix_mul
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return
mgb.opr.batched_matrix_mul(inp1, inp2)
megengine._internal.opr.batched_matrix_mul
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret =
mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW")
megengine._internal.opr.warp_perspective
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret = mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW") if mode == "LINEAR": ret = mgb.opr.reshape(ret, ret.shape[0:3]) return ret @wrap_io_tensor def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: """ Returns a new tensor where each of the elements are randomly set to zero with probability P = ``drop_prob``. Optionally rescale the output tensor. :param inp: The input tensor :param drop_prob: The probability to drop (set to zero) a single element :param rescale: The default behavior of ``dropout`` during training is to rescale the output, then it can be replaced by an :class:`~.Identity` during inference, default to True. :return: The output tensor Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F from megengine import tensor data = tensor(np.ones(10, dtype=np.float32)) out = F.dropout(data, 1./3.) print(out.numpy()) Outputs: .. testoutput:: :options: +SKIP [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] """ assert 0 <= drop_prob < 1 rv = uniform(inp.shape) mask = rv > drop_prob inp *= mask.astype(inp.dtype) if rescale: inp *= 1 / (1 - drop_prob) return inp @wrap_io_tensor def identity(inp: Tensor) -> Tensor: """applies an identity transform to the input tensor. :param inp: The input tensor """ return
mgb.opr.identity(inp)
megengine._internal.opr.identity
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret = mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW") if mode == "LINEAR": ret = mgb.opr.reshape(ret, ret.shape[0:3]) return ret @wrap_io_tensor def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: """ Returns a new tensor where each of the elements are randomly set to zero with probability P = ``drop_prob``. Optionally rescale the output tensor. :param inp: The input tensor :param drop_prob: The probability to drop (set to zero) a single element :param rescale: The default behavior of ``dropout`` during training is to rescale the output, then it can be replaced by an :class:`~.Identity` during inference, default to True. :return: The output tensor Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F from megengine import tensor data = tensor(np.ones(10, dtype=np.float32)) out = F.dropout(data, 1./3.) print(out.numpy()) Outputs: .. testoutput:: :options: +SKIP [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] """ assert 0 <= drop_prob < 1 rv = uniform(inp.shape) mask = rv > drop_prob inp *= mask.astype(inp.dtype) if rescale: inp *= 1 / (1 - drop_prob) return inp @wrap_io_tensor def identity(inp: Tensor) -> Tensor: """applies an identity transform to the input tensor. :param inp: The input tensor """ return mgb.opr.identity(inp) @wrap_io_tensor def embedding( input: Tensor, weight: Tensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: Optional[float] = None, ): """ Applies lookup table for embedding. :param input: the tensor with indices. :param weight: the learnable weights which embedding from. :param padding_idx: should be set to None, not support now. :param max_norm: should be set to None, not support now. :param norm_type: should be set to None, not support now. Refer to :class:`~.Embedding` for more information. """ if padding_idx is not None: raise ValueError("Not support padding_idx Now!") if max_norm is not None or norm_type is not None: raise ValueError("Not support weight normlization Now!") return mgb.opr.advanced_indexing(weight)[input.reshape(-1), :].reshape( input.shape, weight.shape[-1] ) @wrap_io_tensor def roi_pooling( input: Tensor, rois: Tensor, output_shape: Union[int, tuple, list], mode: str = "max", scale: float = 1.0, ) -> Tensor: """ Apply roi pooling on input feature :param input: tensor that represents the input feature, (N, C, H, W) images :param rois: (K, 5) boxes. First column is the index into N. The other 4 columns are xyxy :param output_shape: (height, width) of output rois feature :param mode: "max" or "average", use max/average align just like max/average pooling. Default: ``"max"`` :param scale: scale the input boxes by this number. Default: 1.0 :return: (K, C, output_shape[0], output_shape[1]) feature of rois """ assert mode in ["max", "average"], "only max/average mode is supported" if isinstance(output_shape, int): output_shape = (output_shape, output_shape) return mgb.opr.roi_pooling( input, rois, output_shape, mode=mode.upper(), scale=scale ) @wrap_io_tensor def roi_align( input: Tensor, rois: Tensor, output_shape: Union[int, tuple, list], mode: str = "average", spatial_scale: float = 1.0, sample_points: Union[int, tuple, list] = 2, aligned: bool = True, ) -> Tensor: """ Apply roi align on input feature :param input: tensor that represents the input feature, (N, C, H, W) images :param rois: (N, 5) boxes. First column is the index into N. The other 4 columns are xyxy :param output_shape: (height, width) shape of output rois feature. :param mode: "max" or "average", use max/average align just like max/average pooling. Default: ``"average"`` :param spatial_scale: scale the input boxes by this number. Default: 1.0 :param sample_points: number of inputs samples to take for each output sample. 0 to take samples densely. Default: 2 :param aligned: wheather align the input feature, with `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5. Default: True """ assert mode in ["max", "average"], "only max/average mode is supported" if isinstance(output_shape, int): output_shape = (output_shape, output_shape) pooled_height, pooled_width = output_shape if isinstance(sample_points, int): sample_points = (sample_points, sample_points) sample_height, sample_width = sample_points offset = 0.5 if aligned else 0.0 return mgb.opr.roi_align( input, rois, mode=mode.upper(), spatial_scale=spatial_scale, offset=offset, pooled_height=pooled_height, pooled_width=pooled_width, sample_height=sample_height, sample_width=sample_width, ) @wrap_io_tensor def assert_equal( get: Tensor, expect: Tensor, max_err: float = 1e-4, verbose: bool = False ) -> Tensor: r""" Asserts that ``get`` equals to ``expect``, and returns value of ``expect``. :param get: tensor to be checked. :param expect: tensor with expected values. :param max_err: tolerance that two float values are asserted equal. Default: 1e-4 :param verbose: whether to print details if two tensors are not equal. Default: False Examples: .. testcode:: import megengine.functional as F from megengine import tensor get = tensor([1.0, 2.0]) max_err = 0.1 expect = get + max_err / 2.0 val = F.assert_equal(expect, get, max_err=max_err) print(val.numpy()) Outputs: .. testoutput:: [1.05 2.05] """ return
mgb.opr.assert_equal(get, expect, maxerr=max_err, verbose=verbose)
megengine._internal.opr.assert_equal
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret = mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW") if mode == "LINEAR": ret = mgb.opr.reshape(ret, ret.shape[0:3]) return ret @wrap_io_tensor def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: """ Returns a new tensor where each of the elements are randomly set to zero with probability P = ``drop_prob``. Optionally rescale the output tensor. :param inp: The input tensor :param drop_prob: The probability to drop (set to zero) a single element :param rescale: The default behavior of ``dropout`` during training is to rescale the output, then it can be replaced by an :class:`~.Identity` during inference, default to True. :return: The output tensor Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F from megengine import tensor data = tensor(np.ones(10, dtype=np.float32)) out = F.dropout(data, 1./3.) print(out.numpy()) Outputs: .. testoutput:: :options: +SKIP [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] """ assert 0 <= drop_prob < 1 rv = uniform(inp.shape) mask = rv > drop_prob inp *= mask.astype(inp.dtype) if rescale: inp *= 1 / (1 - drop_prob) return inp @wrap_io_tensor def identity(inp: Tensor) -> Tensor: """applies an identity transform to the input tensor. :param inp: The input tensor """ return mgb.opr.identity(inp) @wrap_io_tensor def embedding( input: Tensor, weight: Tensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: Optional[float] = None, ): """ Applies lookup table for embedding. :param input: the tensor with indices. :param weight: the learnable weights which embedding from. :param padding_idx: should be set to None, not support now. :param max_norm: should be set to None, not support now. :param norm_type: should be set to None, not support now. Refer to :class:`~.Embedding` for more information. """ if padding_idx is not None: raise ValueError("Not support padding_idx Now!") if max_norm is not None or norm_type is not None: raise ValueError("Not support weight normlization Now!") return mgb.opr.advanced_indexing(weight)[input.reshape(-1), :].reshape( input.shape, weight.shape[-1] ) @wrap_io_tensor def roi_pooling( input: Tensor, rois: Tensor, output_shape: Union[int, tuple, list], mode: str = "max", scale: float = 1.0, ) -> Tensor: """ Apply roi pooling on input feature :param input: tensor that represents the input feature, (N, C, H, W) images :param rois: (K, 5) boxes. First column is the index into N. The other 4 columns are xyxy :param output_shape: (height, width) of output rois feature :param mode: "max" or "average", use max/average align just like max/average pooling. Default: ``"max"`` :param scale: scale the input boxes by this number. Default: 1.0 :return: (K, C, output_shape[0], output_shape[1]) feature of rois """ assert mode in ["max", "average"], "only max/average mode is supported" if isinstance(output_shape, int): output_shape = (output_shape, output_shape) return mgb.opr.roi_pooling( input, rois, output_shape, mode=mode.upper(), scale=scale ) @wrap_io_tensor def roi_align( input: Tensor, rois: Tensor, output_shape: Union[int, tuple, list], mode: str = "average", spatial_scale: float = 1.0, sample_points: Union[int, tuple, list] = 2, aligned: bool = True, ) -> Tensor: """ Apply roi align on input feature :param input: tensor that represents the input feature, (N, C, H, W) images :param rois: (N, 5) boxes. First column is the index into N. The other 4 columns are xyxy :param output_shape: (height, width) shape of output rois feature. :param mode: "max" or "average", use max/average align just like max/average pooling. Default: ``"average"`` :param spatial_scale: scale the input boxes by this number. Default: 1.0 :param sample_points: number of inputs samples to take for each output sample. 0 to take samples densely. Default: 2 :param aligned: wheather align the input feature, with `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5. Default: True """ assert mode in ["max", "average"], "only max/average mode is supported" if isinstance(output_shape, int): output_shape = (output_shape, output_shape) pooled_height, pooled_width = output_shape if isinstance(sample_points, int): sample_points = (sample_points, sample_points) sample_height, sample_width = sample_points offset = 0.5 if aligned else 0.0 return mgb.opr.roi_align( input, rois, mode=mode.upper(), spatial_scale=spatial_scale, offset=offset, pooled_height=pooled_height, pooled_width=pooled_width, sample_height=sample_height, sample_width=sample_width, ) @wrap_io_tensor def assert_equal( get: Tensor, expect: Tensor, max_err: float = 1e-4, verbose: bool = False ) -> Tensor: r""" Asserts that ``get`` equals to ``expect``, and returns value of ``expect``. :param get: tensor to be checked. :param expect: tensor with expected values. :param max_err: tolerance that two float values are asserted equal. Default: 1e-4 :param verbose: whether to print details if two tensors are not equal. Default: False Examples: .. testcode:: import megengine.functional as F from megengine import tensor get = tensor([1.0, 2.0]) max_err = 0.1 expect = get + max_err / 2.0 val = F.assert_equal(expect, get, max_err=max_err) print(val.numpy()) Outputs: .. testoutput:: [1.05 2.05] """ return mgb.opr.assert_equal(get, expect, maxerr=max_err, verbose=verbose) @wrap_io_tensor def indexing_one_hot( src: Tensor, index: Tensor, axis: int = 1, keepdims=False ) -> Tensor: r""" One-hot indexing for some axis. :param src: input data tensor. :param index: index tensor. :param axis: the axis on src for which values in index index. Default: 1 :param keepdims: whether not to remove the axis in result. Default: ``False`` Examples: .. testcode:: import megengine.functional as F from megengine import tensor src = tensor([[1.0, 2.0]]) index = tensor([0]) val = F.indexing_one_hot(src, index) print(val.numpy()) .. testoutput:: [1.] """ return
mgb.opr.indexing_one_hot(src, axis, index, keepdims=keepdims)
megengine._internal.opr.indexing_one_hot
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return
mgb.opr.elemwise(inp, 0, mode="MAX")
megengine._internal.opr.elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return
mgb.opr.elemwise(inp, 0, mode="MAX")
megengine._internal.opr.elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return
mgb.opr.elem.exp(inp)
megengine._internal.opr.elem.exp
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp =
mgb.opr.add_axis(inp, 3)
megengine._internal.opr.add_axis
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize =
mgb.opr.concat([dsize[0], dsize[1]], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight =
mgb.opr.broadcast(weight, (inp.shape[0], 3, 3))
megengine._internal.opr.broadcast
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight =
mgb.opr.broadcast(weight, (inp.shape[0], 3, 3))
megengine._internal.opr.broadcast
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret = mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW") if mode == "LINEAR": ret =
mgb.opr.reshape(ret, ret.shape[0:3])
megengine._internal.opr.reshape
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down =
mgb.opr.elem.exp(inp)
megengine._internal.opr.elem.exp
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple(
mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR")
megengine._internal.opr.elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 =
mgb.opr.concat([wscale, [0, 0]], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 =
mgb.opr.concat([[0], hscale, [0]], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight =
mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 =
mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 =
mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight =
mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0)
megengine._internal.opr.concat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret = mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW") if mode == "LINEAR": ret = mgb.opr.reshape(ret, ret.shape[0:3]) return ret @wrap_io_tensor def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: """ Returns a new tensor where each of the elements are randomly set to zero with probability P = ``drop_prob``. Optionally rescale the output tensor. :param inp: The input tensor :param drop_prob: The probability to drop (set to zero) a single element :param rescale: The default behavior of ``dropout`` during training is to rescale the output, then it can be replaced by an :class:`~.Identity` during inference, default to True. :return: The output tensor Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F from megengine import tensor data = tensor(np.ones(10, dtype=np.float32)) out = F.dropout(data, 1./3.) print(out.numpy()) Outputs: .. testoutput:: :options: +SKIP [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] """ assert 0 <= drop_prob < 1 rv = uniform(inp.shape) mask = rv > drop_prob inp *= mask.astype(inp.dtype) if rescale: inp *= 1 / (1 - drop_prob) return inp @wrap_io_tensor def identity(inp: Tensor) -> Tensor: """applies an identity transform to the input tensor. :param inp: The input tensor """ return mgb.opr.identity(inp) @wrap_io_tensor def embedding( input: Tensor, weight: Tensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: Optional[float] = None, ): """ Applies lookup table for embedding. :param input: the tensor with indices. :param weight: the learnable weights which embedding from. :param padding_idx: should be set to None, not support now. :param max_norm: should be set to None, not support now. :param norm_type: should be set to None, not support now. Refer to :class:`~.Embedding` for more information. """ if padding_idx is not None: raise ValueError("Not support padding_idx Now!") if max_norm is not None or norm_type is not None: raise ValueError("Not support weight normlization Now!") return
mgb.opr.advanced_indexing(weight)
megengine._internal.opr.advanced_indexing
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net =
quantize_qat(net)
megengine.quantization.quantize.quantize_qat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net =
quantize_qat(net)
megengine.quantization.quantize.quantize_qat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype =
dtype.qint8(16.0 / 128)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net =
quantize_qat(net)
megengine.quantization.quantize.quantize_qat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype =
dtype.qint8(16.0 / 128)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net =
quantize_qat(net)
megengine.quantization.quantize.quantize_qat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype =
dtype.qint8(16.0 / 128)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net =
quantize_qat(net)
megengine.quantization.quantize.quantize_qat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype =
dtype.qint8(16.0 / 128)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net =
quantize_qat(net)
megengine.quantization.quantize.quantize_qat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype =
dtype.qint8(16.0 / 128)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype =
dtype.qint8(16.0 / 128.0)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub = QuantStub() self.quant_stub.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) self.quant_stub1 = QuantStub() self.quant_stub1.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub1.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) def forward(self, a): n = self.quant_stub(mge.tensor(np.float32(10))) data1 = self.quant_stub1(mge.tensor(self.data1)) x = self.add1(a, n) y = self.add2(a, data1) z = self.add3(x, y) return z net = ElemwiseOpr() inp_dtype =
dtype.qint8(16.0 / 128.0)
megengine.core.tensor.dtype.qint8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(
dtype.get_scale(inp_dtype)
megengine.core.tensor.dtype.get_scale
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(
dtype.get_scale(inp_dtype)
megengine.core.tensor.dtype.get_scale
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(
dtype.get_scale(inp_dtype)
megengine.core.tensor.dtype.get_scale
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(
dtype.get_scale(inp_dtype)
megengine.core.tensor.dtype.get_scale
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(
dtype.get_scale(inp_dtype)
megengine.core.tensor.dtype.get_scale
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(
dtype.get_scale(inp_dtype)
megengine.core.tensor.dtype.get_scale
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 =
M.Elemwise("add")
megengine.module.Elemwise
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 =
M.Elemwise("add")
megengine.module.Elemwise
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 =
M.Elemwise("add")
megengine.module.Elemwise
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub =
QuantStub()
megengine.module.quant_dequant.QuantStub
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub = QuantStub() self.quant_stub.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) self.quant_stub1 =
QuantStub()
megengine.module.quant_dequant.QuantStub
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub = QuantStub() self.quant_stub.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) self.quant_stub1 = QuantStub() self.quant_stub1.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub1.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) def forward(self, a): n = self.quant_stub(mge.tensor(np.float32(10))) data1 = self.quant_stub1(
mge.tensor(self.data1)
megengine.tensor
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) data =
tensor([2.34])
megengine.tensor
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) data = tensor([2.34]) with gm: loss = net(data) gm.backward(loss) optim.step() model_name = "simple.pkl" print("save to {}".format(model_name)) mge.save( { "name": "simple", "state_dict": net.state_dict(), "opt_state": optim.state_dict(), }, model_name, ) # Load param to cpu checkpoint =
mge.load(model_name, map_location="cpu0")
megengine.load
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) data = tensor([2.34]) with gm: loss = net(data) gm.backward(loss) optim.step() model_name = "simple.pkl" print("save to {}".format(model_name)) mge.save( { "name": "simple", "state_dict": net.state_dict(), "opt_state": optim.state_dict(), }, model_name, ) # Load param to cpu checkpoint = mge.load(model_name, map_location="cpu0") device_save =
mge.get_default_device()
megengine.get_default_device
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) data = tensor([2.34]) with gm: loss = net(data) gm.backward(loss) optim.step() model_name = "simple.pkl" print("save to {}".format(model_name)) mge.save( { "name": "simple", "state_dict": net.state_dict(), "opt_state": optim.state_dict(), }, model_name, ) # Load param to cpu checkpoint = mge.load(model_name, map_location="cpu0") device_save = mge.get_default_device()
mge.set_default_device("cpu0")
megengine.set_default_device
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) data = tensor([2.34]) with gm: loss = net(data) gm.backward(loss) optim.step() model_name = "simple.pkl" print("save to {}".format(model_name)) mge.save( { "name": "simple", "state_dict": net.state_dict(), "opt_state": optim.state_dict(), }, model_name, ) # Load param to cpu checkpoint = mge.load(model_name, map_location="cpu0") device_save = mge.get_default_device() mge.set_default_device("cpu0") net = Simple() net.load_state_dict(checkpoint["state_dict"]) optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.load_state_dict(checkpoint["opt_state"]) print("load done") with gm: loss = net([1.23]) gm.backward(loss) optim.step() # Restore device
mge.set_default_device(device_save)
megengine.set_default_device
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a =
Parameter(1.23, dtype=np.float32)
megengine.Parameter
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm =
ad.GradManager()
megengine.autodiff.GradManager
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop():
_set_swap_flag(True)
megengine.core._imperative_rt.core2._set_swap_flag
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True)
_set_drop_flag(True)
megengine.core._imperative_rt.core2._set_drop_flag
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length =
get_option("buffer_length")
megengine.core._imperative_rt.core2.get_option
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length")
set_option("buffer_length", 0)
megengine.core._imperative_rt.core2.set_option
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data = Tensor(data, dtype=np.float32) label = Tensor(label, dtype=np.int32) opt.clear_grad() loss = train(data, label) opt.step() losses.append(loss.numpy()) assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough" ngrid = 10 x = np.linspace(-1.0, 1.0, ngrid) xx, yy = np.meshgrid(x, x) xx = xx.reshape((ngrid * ngrid, 1)) yy = yy.reshape((ngrid * ngrid, 1)) data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) pred = infer(Tensor(data)).numpy() precision = calculate_precision(data.numpy(), pred) assert precision == 1.0, "Test precision must be high enough, get {}".format( precision )
_set_swap_flag(False)
megengine.core._imperative_rt.core2._set_swap_flag
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data = Tensor(data, dtype=np.float32) label = Tensor(label, dtype=np.int32) opt.clear_grad() loss = train(data, label) opt.step() losses.append(loss.numpy()) assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough" ngrid = 10 x = np.linspace(-1.0, 1.0, ngrid) xx, yy = np.meshgrid(x, x) xx = xx.reshape((ngrid * ngrid, 1)) yy = yy.reshape((ngrid * ngrid, 1)) data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) pred = infer(Tensor(data)).numpy() precision = calculate_precision(data.numpy(), pred) assert precision == 1.0, "Test precision must be high enough, get {}".format( precision ) _set_swap_flag(False)
_set_drop_flag(False)
megengine.core._imperative_rt.core2._set_drop_flag
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data = Tensor(data, dtype=np.float32) label = Tensor(label, dtype=np.int32) opt.clear_grad() loss = train(data, label) opt.step() losses.append(loss.numpy()) assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough" ngrid = 10 x = np.linspace(-1.0, 1.0, ngrid) xx, yy = np.meshgrid(x, x) xx = xx.reshape((ngrid * ngrid, 1)) yy = yy.reshape((ngrid * ngrid, 1)) data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) pred = infer(Tensor(data)).numpy() precision = calculate_precision(data.numpy(), pred) assert precision == 1.0, "Test precision must be high enough, get {}".format( precision ) _set_swap_flag(False) _set_drop_flag(False)
set_option("buffer_length", old_buffer_length)
megengine.core._imperative_rt.core2.set_option
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 =
Linear(self.num_class, self.mid_layers, bias=True)
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 =
Linear(self.mid_layers, self.mid_layers, bias=True)
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 =
Linear(self.mid_layers, self.num_class, bias=True)
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x =
F.tanh(y)
megengine.functional.tanh
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x =
F.tanh(y)
megengine.functional.tanh
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data =
Tensor(data, dtype=np.float32)
megengine.Tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data = Tensor(data, dtype=np.float32) label =
Tensor(label, dtype=np.int32)
megengine.Tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm =
ad.GradManager()
megengine.autodiff.GradManager
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss =
F.nn.cross_entropy(pred, label)
megengine.functional.nn.cross_entropy
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data = Tensor(data, dtype=np.float32) label = Tensor(label, dtype=np.int32) opt.clear_grad() loss = train(data, label) opt.step() losses.append(loss.numpy()) assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough" ngrid = 10 x = np.linspace(-1.0, 1.0, ngrid) xx, yy = np.meshgrid(x, x) xx = xx.reshape((ngrid * ngrid, 1)) yy = yy.reshape((ngrid * ngrid, 1)) data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) pred = infer(
Tensor(data)
megengine.Tensor
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.random import uniform def sample_labels(labels, num_samples, label_value, ignore_label=-1): """sample N labels with label value = sample_labels Args: labels(Tensor): shape of label is (N,) num_samples(int): label_value(int): Returns: label(Tensor): label after sampling """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." mask = (labels == label_value) num_class = mask.sum() if num_class <= num_samples: return labels topk_tensor = F.zeros_like(labels).astype("float32") topk_tensor[mask] =
uniform(size=num_class)
megengine.random.uniform
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.random import uniform def sample_labels(labels, num_samples, label_value, ignore_label=-1): """sample N labels with label value = sample_labels Args: labels(Tensor): shape of label is (N,) num_samples(int): label_value(int): Returns: label(Tensor): label after sampling """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." mask = (labels == label_value) num_class = mask.sum() if num_class <= num_samples: return labels topk_tensor = F.zeros_like(labels).astype("float32") topk_tensor[mask] = uniform(size=num_class) _, select_inds =
F.topk(topk_tensor, k=num_samples - num_class)
megengine.functional.topk
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.random import uniform def sample_labels(labels, num_samples, label_value, ignore_label=-1): """sample N labels with label value = sample_labels Args: labels(Tensor): shape of label is (N,) num_samples(int): label_value(int): Returns: label(Tensor): label after sampling """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." mask = (labels == label_value) num_class = mask.sum() if num_class <= num_samples: return labels topk_tensor = F.zeros_like(labels).astype("float32") topk_tensor[mask] = uniform(size=num_class) _, select_inds = F.topk(topk_tensor, k=num_samples - num_class) labels[select_inds] = ignore_label return labels def sample_mask_from_labels(labels, num_sample, sample_value): """generate mask for labels using sampling method. Args: labels (Tensor): num_sample (int): sample_value (int): Returns: sample_mask (Tensor) """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." # TODO: support bool mask sample_mask = (labels == sample_value).astype("float32") num_mask = sample_mask.sum().astype("int32") if num_mask <= num_sample: return sample_mask random_tensor = sample_mask * uniform(size=labels.shape) _, sampled_idx =
F.topk(random_tensor, k=num_sample - num_mask)
megengine.functional.topk
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.random import uniform def sample_labels(labels, num_samples, label_value, ignore_label=-1): """sample N labels with label value = sample_labels Args: labels(Tensor): shape of label is (N,) num_samples(int): label_value(int): Returns: label(Tensor): label after sampling """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." mask = (labels == label_value) num_class = mask.sum() if num_class <= num_samples: return labels topk_tensor = F.zeros_like(labels).astype("float32") topk_tensor[mask] = uniform(size=num_class) _, select_inds = F.topk(topk_tensor, k=num_samples - num_class) labels[select_inds] = ignore_label return labels def sample_mask_from_labels(labels, num_sample, sample_value): """generate mask for labels using sampling method. Args: labels (Tensor): num_sample (int): sample_value (int): Returns: sample_mask (Tensor) """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." # TODO: support bool mask sample_mask = (labels == sample_value).astype("float32") num_mask = sample_mask.sum().astype("int32") if num_mask <= num_sample: return sample_mask random_tensor = sample_mask * uniform(size=labels.shape) _, sampled_idx = F.topk(random_tensor, k=num_sample - num_mask) sample_mask[sampled_idx] =
F.zeros(sampled_idx.shape)
megengine.functional.zeros
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.random import uniform def sample_labels(labels, num_samples, label_value, ignore_label=-1): """sample N labels with label value = sample_labels Args: labels(Tensor): shape of label is (N,) num_samples(int): label_value(int): Returns: label(Tensor): label after sampling """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." mask = (labels == label_value) num_class = mask.sum() if num_class <= num_samples: return labels topk_tensor = F.zeros_like(labels).astype("float32") topk_tensor[mask] = uniform(size=num_class) _, select_inds = F.topk(topk_tensor, k=num_samples - num_class) labels[select_inds] = ignore_label return labels def sample_mask_from_labels(labels, num_sample, sample_value): """generate mask for labels using sampling method. Args: labels (Tensor): num_sample (int): sample_value (int): Returns: sample_mask (Tensor) """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." # TODO: support bool mask sample_mask = (labels == sample_value).astype("float32") num_mask = sample_mask.sum().astype("int32") if num_mask <= num_sample: return sample_mask random_tensor = sample_mask *
uniform(size=labels.shape)
megengine.random.uniform
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.random import uniform def sample_labels(labels, num_samples, label_value, ignore_label=-1): """sample N labels with label value = sample_labels Args: labels(Tensor): shape of label is (N,) num_samples(int): label_value(int): Returns: label(Tensor): label after sampling """ assert labels.ndim == 1, "Only tensor of dim 1 is supported." mask = (labels == label_value) num_class = mask.sum() if num_class <= num_samples: return labels topk_tensor =
F.zeros_like(labels)
megengine.functional.zeros_like
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr =
tensor(lr)
megengine.tensor
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay =
tensor(weight_decay)
megengine.tensor
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay = tensor(weight_decay) _momentum =
tensor(momentum)
megengine.tensor
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay = tensor(weight_decay) _momentum = tensor(momentum) inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: _neg_lr =
tensor(-lr)
megengine.tensor
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay = tensor(weight_decay) _momentum = tensor(momentum) inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: _neg_lr = tensor(-lr) c1 =
tensor([1.0])
megengine.tensor
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay = tensor(weight_decay) _momentum = tensor(momentum) inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: _neg_lr = tensor(-lr) c1 = tensor([1.0]) for param in param_group["params"]: if param.grad is None: continue grad = param.grad if weight_decay != 0.0: grad = grad + param * _weight_decay if inplace_mode: if momentum != 0.0: v = self._state[param]["momentum_buffer"] _inplace_add_(v, grad, alpha=_momentum, beta=c1) if self.nesterov: grad = grad + v * _momentum else: grad = v
_inplace_add_(param, grad, alpha=c1, beta=_neg_lr)
megengine.functional.inplace._inplace_add_