prompt
stringlengths
70
19.8k
completion
stringlengths
8
1.03k
api
stringlengths
23
93
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import SimpleDirectoryReader documents_1 = SimpleDirectoryReader( input_files=["../../community/integrations/vector_stores.md"] ).load_data() documents_2 = SimpleDirectoryReader( input_files=["../../module_guides/storing/vector_stores.md"] ).load_data() from llama_index.core import VectorStoreIndex index_1 = VectorStoreIndex.from_documents(documents_1) index_2 = VectorStoreIndex.from_documents(documents_2) from llama_index.core.retrievers import QueryFusionRetriever retriever = QueryFusionRetriever( [index_1.as_retriever(), index_2.as_retriever()], similarity_top_k=2, num_queries=4, # set this to 1 to disable query generation use_async=True, verbose=True, ) import nest_asyncio nest_asyncio.apply() nodes_with_scores = retriever.retrieve("How do I setup a chroma vector store?") for node in nodes_with_scores: print(f"Score: {node.score:.2f} - {node.text[:100]}...") from llama_index.core.query_engine import RetrieverQueryEngine query_engine =
RetrieverQueryEngine.from_args(retriever)
llama_index.core.query_engine.RetrieverQueryEngine.from_args
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().system('pip install llama-index qdrant_client') import qdrant_client from llama_index.core import VectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore client = qdrant_client.QdrantClient( location=":memory:" ) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] import os from llama_index.core import StorageContext os.environ["OPENAI_API_KEY"] = "sk-..." vector_store = QdrantVectorStore( client=client, collection_name="test_collection_1" ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey') get_ipython().system('pip install llama-index') get_ipython().system('pip install -U llama_index') get_ipython().system('pip install -U portkey-ai') from llama_index.llms.portkey import Portkey from llama_index.core.llms import ChatMessage import portkey as pk import os os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY" openai_virtual_key_a = "" openai_virtual_key_b = "" anthropic_virtual_key_a = "" anthropic_virtual_key_b = "" cohere_virtual_key_a = "" cohere_virtual_key_b = "" os.environ["OPENAI_API_KEY"] = "" os.environ["ANTHROPIC_API_KEY"] = "" portkey_client = Portkey( mode="single", ) openai_llm = pk.LLMOptions( provider="openai", model="gpt-4", virtual_key=openai_virtual_key_a, ) portkey_client.add_llms(openai_llm) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("Testing Portkey Llamaindex integration:") response = portkey_client.chat(messages) print(response) prompt = "Why is the sky blue?" print("\nTesting Stream Complete:\n") response = portkey_client.stream_complete(prompt) for i in response: print(i.delta, end="", flush=True) messages = [
ChatMessage(role="system", content="You are a helpful assistant")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-.." openai.api_key = os.environ["OPENAI_API_KEY"] from IPython.display import Markdown, display from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, ) engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo") sql_database = SQLDatabase(engine, include_tables=["city_stats"]) sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, { "city_name": "Chicago", "population": 2679000, "country": "United States", }, {"city_name": "Seoul", "population": 9776000, "country": "South Korea"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) stmt = select( city_stats_table.c.city_name, city_stats_table.c.population, city_stats_table.c.country, ).select_from(city_stats_table) with engine.connect() as connection: results = connection.execute(stmt).fetchall() print(results) from sqlalchemy import text with engine.connect() as con: rows = con.execute(text("SELECT city_name from city_stats")) for row in rows: print(row) from llama_index.core.query_engine import NLSQLTableQueryEngine query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], llm=llm ) query_str = "Which city has the highest population?" response = query_engine.query(query_str) display(Markdown(f"<b>{response}</b>")) from llama_index.core.indices.struct_store.sql_query import ( SQLTableRetrieverQueryEngine, ) from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import VectorStoreIndex table_node_mapping =
SQLTableNodeMapping(sql_database)
llama_index.core.objects.SQLTableNodeMapping
get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.program.openai import OpenAIPydanticProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm =
OpenAI(model="gpt-4", callback_manager=callback_manager)
llama_index.llms.openai.OpenAI
get_ipython().system('pip install llama-index') get_ipython().system('pip install wget') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-azureaisearch') get_ipython().run_line_magic('pip', 'install azure-search-documents==11.4.0') get_ipython().run_line_magic('llama-index-embeddings-azure-openai', '') get_ipython().run_line_magic('llama-index-llms-azure-openai', '') import logging import sys from azure.core.credentials import AzureKeyCredential from azure.search.documents import SearchClient from azure.search.documents.indexes import SearchIndexClient from IPython.display import Markdown, display from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.core.settings import Settings from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore from llama_index.vector_stores.azureaisearch import ( IndexManagement, MetadataIndexFieldType, ) aoai_api_key = "YOUR_AZURE_OPENAI_API_KEY" aoai_endpoint = "YOUR_AZURE_OPENAI_ENDPOINT" aoai_api_version = "2023-05-15" llm = AzureOpenAI( model="YOUR_AZURE_OPENAI_COMPLETION_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_COMPLETION_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) embed_model = AzureOpenAIEmbedding( model="YOUR_AZURE_OPENAI_EMBEDDING_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY" search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT" search_service_api_version = "2023-11-01" credential = AzureKeyCredential(search_service_api_key) index_name = "llamaindex-vector-demo" index_client = SearchIndexClient( endpoint=search_service_endpoint, credential=credential, ) search_client = SearchClient( endpoint=search_service_endpoint, index_name=index_name, credential=credential, ) metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=index_client, filterable_metadata_field_keys=metadata_fields, index_name=index_name, index_management=IndexManagement.CREATE_IF_NOT_EXISTS, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", language_analyzer="en.lucene", vector_algorithm_type="exhaustiveKnn", ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("../data/paul_graham/").load_data() storage_context = StorageContext.from_defaults(vector_store=vector_store) Settings.llm = llm Settings.embed_model = embed_model index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine(similarity_top_k=3) response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) response = query_engine.query( "What did the author learn?", ) display(Markdown(f"<b>{response}</b>")) index_name = "llamaindex-vector-demo" metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=search_client, filterable_metadata_field_keys=metadata_fields, index_management=IndexManagement.VALIDATE_INDEX, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner') get_ipython().system('pip install llama-index llama-hub') get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import nest_asyncio nest_asyncio.apply() from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SimpleNodeParser from llama_index.core.schema import IndexNode get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) eval_qs = eval_dataset.questions ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs] from llama_index.core import ( VectorStoreIndex, load_index_from_storage, StorageContext, ) from llama_index.experimental.param_tuner import ParamTuner from llama_index.core.param_tuner.base import TunedResult, RunResult from llama_index.core.evaluation.eval_utils import ( get_responses, aget_responses, ) from llama_index.core.evaluation import ( SemanticSimilarityEvaluator, BatchEvalRunner, ) from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding import os import numpy as np from pathlib import Path def _build_index(chunk_size, docs): index_out_path = f"./storage_{chunk_size}" if not os.path.exists(index_out_path): Path(index_out_path).mkdir(parents=True, exist_ok=True) node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size) base_nodes = node_parser.get_nodes_from_documents(docs) index = VectorStoreIndex(base_nodes) index.storage_context.persist(index_out_path) else: storage_context = StorageContext.from_defaults( persist_dir=index_out_path ) index = load_index_from_storage( storage_context, ) return index def _get_eval_batch_runner(): evaluator_s = SemanticSimilarityEvaluator(embed_model=OpenAIEmbedding()) eval_batch_runner = BatchEvalRunner( {"semantic_similarity": evaluator_s}, workers=2, show_progress=True ) return eval_batch_runner def objective_function(params_dict): chunk_size = params_dict["chunk_size"] docs = params_dict["docs"] top_k = params_dict["top_k"] eval_qs = params_dict["eval_qs"] ref_response_strs = params_dict["ref_response_strs"] index = _build_index(chunk_size, docs) query_engine = index.as_query_engine(similarity_top_k=top_k) pred_response_objs = get_responses( eval_qs, query_engine, show_progress=True ) eval_batch_runner = _get_eval_batch_runner() eval_results = eval_batch_runner.evaluate_responses( eval_qs, responses=pred_response_objs, reference=ref_response_strs ) mean_score = np.array( [r.score for r in eval_results["semantic_similarity"]] ).mean() return RunResult(score=mean_score, params=params_dict) async def aobjective_function(params_dict): chunk_size = params_dict["chunk_size"] docs = params_dict["docs"] top_k = params_dict["top_k"] eval_qs = params_dict["eval_qs"] ref_response_strs = params_dict["ref_response_strs"] index = _build_index(chunk_size, docs) query_engine = index.as_query_engine(similarity_top_k=top_k) pred_response_objs = await aget_responses( eval_qs, query_engine, show_progress=True ) eval_batch_runner = _get_eval_batch_runner() eval_results = await eval_batch_runner.aevaluate_responses( eval_qs, responses=pred_response_objs, reference=ref_response_strs ) mean_score = np.array( [r.score for r in eval_results["semantic_similarity"]] ).mean() return
RunResult(score=mean_score, params=params_dict)
llama_index.core.param_tuner.base.RunResult
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core import PromptTemplate from llama_index.llms.openai import OpenAI qa_prompt_tmpl_str = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, answer the query. Please write the answer in the style of {tone_name} Query: {query_str} Answer: \ """ prompt_tmpl =
PromptTemplate(qa_prompt_tmpl_str)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') from pydantic import BaseModel from unstructured.partition.html import partition_html import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader =
FlatReader()
llama_index.readers.file.FlatReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-ai21') get_ipython().system('pip install llama-index') from llama_index.llms.ai21 import AI21 api_key = "Your api key" resp = AI21(api_key=api_key).complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.ai21 import AI21 messages = [ ChatMessage(role="user", content="hello there"), ChatMessage( role="assistant", content="Arrrr, matey! How can I help ye today?" ), ChatMessage(role="user", content="What is your name"), ] resp = AI21(api_key=api_key).chat( messages, preamble_override="You are a pirate with a colorful personality" ) print(resp) from llama_index.llms.ai21 import AI21 llm = AI21(model="j2-mid", api_key=api_key) resp = llm.complete("Paul Graham is ") print(resp) from llama_index.llms.ai21 import AI21 llm_good =
AI21(api_key=api_key)
llama_index.llms.ai21.AI21
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-neo4jvector') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY" openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.vector_stores.neo4jvector import Neo4jVectorStore username = "neo4j" password = "pleaseletmein" url = "bolt://localhost:7687" embed_dim = 1536 neo4j_vector = Neo4jVectorStore(username, password, url, embed_dim) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database =
SQLDatabase(engine)
llama_index.core.SQLDatabase
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter(chunk_size=256) nodes = node_parser.get_nodes_from_documents(documents) from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() for node in nodes: node_embedding = embed_model.get_text_embedding( node.get_content(metadata_mode="all") ) node.embedding = node_embedding from llama_index.core.vector_stores.types import VectorStore from llama_index.core.vector_stores import ( VectorStoreQuery, VectorStoreQueryResult, ) from typing import List, Any, Optional, Dict from llama_index.core.schema import TextNode, BaseNode import os class BaseVectorStore(VectorStore): """Simple custom Vector Store. Stores documents in a simple in-memory dict. """ stores_text: bool = True def get(self, text_id: str) -> List[float]: """Get embedding.""" pass def add( self, nodes: List[BaseNode], ) -> List[str]: """Add nodes to index.""" pass def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None: """ Delete nodes using with ref_doc_id. Args: ref_doc_id (str): The doc_id of the document to delete. """ pass def query( self, query: VectorStoreQuery, **kwargs: Any, ) -> VectorStoreQueryResult: """Get nodes for response.""" pass def persist(self, persist_path, fs=None) -> None: """Persist the SimpleVectorStore to a directory. NOTE: we are not implementing this for now. """ pass from dataclasses import fields {f.name: f.type for f in fields(VectorStoreQuery)} {f.name: f.type for f in fields(VectorStoreQueryResult)} class VectorStore2(BaseVectorStore): """VectorStore2 (add/get/delete implemented).""" stores_text: bool = True def __init__(self) -> None: """Init params.""" self.node_dict: Dict[str, BaseNode] = {} def get(self, text_id: str) -> List[float]: """Get embedding.""" return self.node_dict[text_id] def add( self, nodes: List[BaseNode], ) -> List[str]: """Add nodes to index.""" for node in nodes: self.node_dict[node.node_id] = node def delete(self, node_id: str, **delete_kwargs: Any) -> None: """ Delete nodes using with node_id. Args: node_id: str """ del self.node_dict[node_id] test_node =
TextNode(id_="id1", text="hello world")
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-readers-deeplake') get_ipython().system('pip install llama-index') import getpass import os import random import textwrap from llama_index.core import VectorStoreIndex from llama_index.readers.deeplake import DeepLakeReader os.environ["OPENAI_API_KEY"] = getpass.getpass("open ai api key: ") reader =
DeepLakeReader()
llama_index.readers.deeplake.DeepLakeReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/examples/gatsby/gatsby_full.txt' -O 'gatsby_full.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./gatsby_full.txt"] ).load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.chunk_size = 1024 nodes =
Settings.node_parser.get_nodes_from_documents(documents)
llama_index.core.Settings.node_parser.get_nodes_from_documents
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import os os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" from pinecone import Pinecone from pinecone import ServerlessSpec api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) try: pc.create_index( "quickstart-index", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) except Exception as e: print(e) pass pinecone_index = pc.Index("quickstart-index") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Fiction", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test", ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd from pathlib import Path data_dir = Path("./WikiTableQuestions/csv/200-csv") csv_files = sorted([f for f in data_dir.glob("*.csv")]) dfs = [] for csv_file in csv_files: print(f"processing file: {csv_file}") try: df = pd.read_csv(csv_file) dfs.append(df) except Exception as e: print(f"Error parsing {csv_file}: {str(e)}") tableinfo_dir = "WikiTableQuestions_TableInfo" get_ipython().system('mkdir {tableinfo_dir}') from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.llms.openai import OpenAI class TableInfo(BaseModel): """Information regarding a structured table.""" table_name: str = Field( ..., description="table name (must be underscores and NO spaces)" ) table_summary: str = Field( ..., description="short, concise summary/caption of the table" ) prompt_str = """\ Give me a summary of the table with the following JSON format. - The table name must be unique to the table and describe it while being concise. - Do NOT output a generic table name (e.g. table, my_table). Do NOT make the table name one of the following: {exclude_table_name_list} Table: {table_str} Summary: """ program = LLMTextCompletionProgram.from_defaults( output_cls=TableInfo, llm=OpenAI(model="gpt-3.5-turbo"), prompt_template_str=prompt_str, ) import json def _get_tableinfo_with_index(idx: int) -> str: results_gen = Path(tableinfo_dir).glob(f"{idx}_*") results_list = list(results_gen) if len(results_list) == 0: return None elif len(results_list) == 1: path = results_list[0] return TableInfo.parse_file(path) else: raise ValueError( f"More than one file matching index: {list(results_gen)}" ) table_names = set() table_infos = [] for idx, df in enumerate(dfs): table_info = _get_tableinfo_with_index(idx) if table_info: table_infos.append(table_info) else: while True: df_str = df.head(10).to_csv() table_info = program( table_str=df_str, exclude_table_name_list=str(list(table_names)), ) table_name = table_info.table_name print(f"Processed table: {table_name}") if table_name not in table_names: table_names.add(table_name) break else: print(f"Table name {table_name} already exists, trying again.") pass out_file = f"{tableinfo_dir}/{idx}_{table_name}.json" json.dump(table_info.dict(), open(out_file, "w")) table_infos.append(table_info) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, ) import re def sanitize_column_name(col_name): return re.sub(r"\W+", "_", col_name) def create_table_from_dataframe( df: pd.DataFrame, table_name: str, engine, metadata_obj ): sanitized_columns = {col: sanitize_column_name(col) for col in df.columns} df = df.rename(columns=sanitized_columns) columns = [ Column(col, String if dtype == "object" else Integer) for col, dtype in zip(df.columns, df.dtypes) ] table = Table(table_name, metadata_obj, *columns) metadata_obj.create_all(engine) with engine.connect() as conn: for _, row in df.iterrows(): insert_stmt = table.insert().values(**row.to_dict()) conn.execute(insert_stmt) conn.commit() engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() for idx, df in enumerate(dfs): tableinfo = _get_tableinfo_with_index(idx) print(f"Creating table: {tableinfo.table_name}") create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj) import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import SQLDatabase, VectorStoreIndex sql_database = SQLDatabase(engine) table_node_mapping = SQLTableNodeMapping(sql_database) table_schema_objs = [ SQLTableSchema(table_name=t.table_name, context_str=t.table_summary) for t in table_infos ] # add a SQLTableSchema for each table obj_index = ObjectIndex.from_objects( table_schema_objs, table_node_mapping, VectorStoreIndex, ) obj_retriever = obj_index.as_retriever(similarity_top_k=3) from llama_index.core.retrievers import SQLRetriever from typing import List from llama_index.core.query_pipeline import FnComponent sql_retriever = SQLRetriever(sql_database) def get_table_context_str(table_schema_objs: List[SQLTableSchema]): """Get table context string.""" context_strs = [] for table_schema_obj in table_schema_objs: table_info = sql_database.get_single_table_info( table_schema_obj.table_name ) if table_schema_obj.context_str: table_opt_context = " The table description is: " table_opt_context += table_schema_obj.context_str table_info += table_opt_context context_strs.append(table_info) return "\n\n".join(context_strs) table_parser_component = FnComponent(fn=get_table_context_str) from llama_index.core.prompts.default_prompts import DEFAULT_TEXT_TO_SQL_PROMPT from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import FnComponent from llama_index.core.llms import ChatResponse def parse_response_to_sql(response: ChatResponse) -> str: """Parse response to SQL.""" response = response.message.content sql_query_start = response.find("SQLQuery:") if sql_query_start != -1: response = response[sql_query_start:] if response.startswith("SQLQuery:"): response = response[len("SQLQuery:") :] sql_result_start = response.find("SQLResult:") if sql_result_start != -1: response = response[:sql_result_start] return response.strip().strip("```").strip() sql_parser_component = FnComponent(fn=parse_response_to_sql) text2sql_prompt = DEFAULT_TEXT_TO_SQL_PROMPT.partial_format( dialect=engine.dialect.name ) print(text2sql_prompt.template) response_synthesis_prompt_str = ( "Given an input question, synthesize a response from the query results.\n" "Query: {query_str}\n" "SQL: {sql_query}\n" "SQL Response: {context_str}\n" "Response: " ) response_synthesis_prompt = PromptTemplate( response_synthesis_prompt_str, ) llm = OpenAI(model="gpt-3.5-turbo") from llama_index.core.query_pipeline import ( QueryPipeline as QP, Link, InputComponent, CustomQueryComponent, ) qp = QP( modules={ "input": InputComponent(), "table_retriever": obj_retriever, "table_output_parser": table_parser_component, "text2sql_prompt": text2sql_prompt, "text2sql_llm": llm, "sql_output_parser": sql_parser_component, "sql_retriever": sql_retriever, "response_synthesis_prompt": response_synthesis_prompt, "response_synthesis_llm": llm, }, verbose=True, ) qp.add_chain(["input", "table_retriever", "table_output_parser"]) qp.add_link("input", "text2sql_prompt", dest_key="query_str") qp.add_link("table_output_parser", "text2sql_prompt", dest_key="schema") qp.add_chain( ["text2sql_prompt", "text2sql_llm", "sql_output_parser", "sql_retriever"] ) qp.add_link( "sql_output_parser", "response_synthesis_prompt", dest_key="sql_query" ) qp.add_link( "sql_retriever", "response_synthesis_prompt", dest_key="context_str" ) qp.add_link("input", "response_synthesis_prompt", dest_key="query_str") qp.add_link("response_synthesis_prompt", "response_synthesis_llm") from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(qp.dag) net.show("text2sql_dag.html") response = qp.run( query="What was the year that The Notorious B.I.G was signed to Bad Boy?" ) print(str(response)) response = qp.run(query="Who won best director in the 1972 academy awards") print(str(response)) response = qp.run(query="What was the term of Pasquale Preziosa?") print(str(response)) from llama_index.core import VectorStoreIndex, load_index_from_storage from sqlalchemy import text from llama_index.core.schema import TextNode from llama_index.core import StorageContext import os from pathlib import Path from typing import Dict def index_all_tables( sql_database: SQLDatabase, table_index_dir: str = "table_index_dir" ) -> Dict[str, VectorStoreIndex]: """Index all tables.""" if not Path(table_index_dir).exists(): os.makedirs(table_index_dir) vector_index_dict = {} engine = sql_database.engine for table_name in sql_database.get_usable_table_names(): print(f"Indexing rows in table: {table_name}") if not os.path.exists(f"{table_index_dir}/{table_name}"): with engine.connect() as conn: cursor = conn.execute(text(f'SELECT * FROM "{table_name}"')) result = cursor.fetchall() row_tups = [] for row in result: row_tups.append(tuple(row)) nodes = [TextNode(text=str(t)) for t in row_tups] index = VectorStoreIndex(nodes) index.set_index_id("vector_index") index.storage_context.persist(f"{table_index_dir}/{table_name}") else: storage_context = StorageContext.from_defaults( persist_dir=f"{table_index_dir}/{table_name}" ) index = load_index_from_storage( storage_context, index_id="vector_index" ) vector_index_dict[table_name] = index return vector_index_dict vector_index_dict = index_all_tables(sql_database) test_retriever = vector_index_dict["Bad_Boy_Artists"].as_retriever( similarity_top_k=1 ) nodes = test_retriever.retrieve("P. Diddy") print(nodes[0].get_content()) from llama_index.core.retrievers import SQLRetriever from typing import List from llama_index.core.query_pipeline import FnComponent sql_retriever = SQLRetriever(sql_database) def get_table_context_and_rows_str( query_str: str, table_schema_objs: List[SQLTableSchema] ): """Get table context string.""" context_strs = [] for table_schema_obj in table_schema_objs: table_info = sql_database.get_single_table_info( table_schema_obj.table_name ) if table_schema_obj.context_str: table_opt_context = " The table description is: " table_opt_context += table_schema_obj.context_str table_info += table_opt_context vector_retriever = vector_index_dict[ table_schema_obj.table_name ].as_retriever(similarity_top_k=2) relevant_nodes = vector_retriever.retrieve(query_str) if len(relevant_nodes) > 0: table_row_context = "\nHere are some relevant example rows (values in the same order as columns above)\n" for node in relevant_nodes: table_row_context += str(node.get_content()) + "\n" table_info += table_row_context context_strs.append(table_info) return "\n\n".join(context_strs) table_parser_component = FnComponent(fn=get_table_context_and_rows_str) from llama_index.core.query_pipeline import ( QueryPipeline as QP, Link, InputComponent, CustomQueryComponent, ) qp = QP( modules={ "input":
InputComponent()
llama_index.core.query_pipeline.InputComponent
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.supabase import SupabaseVectorStore import textwrap import os os.environ["OPENAI_API_KEY"] = "[your_openai_api_key]" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) vector_store = SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" ), collection_name="base_demo", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What did the author do growing up?") print(textwrap.fill(str(response), 100)) from llama_index.core.schema import TextNode nodes = [ TextNode( **{ "text": "The Shawshank Redemption", "metadata": { "author": "Stephen King", "theme": "Friendship", }, } ), TextNode( **{ "text": "The Godfather", "metadata": { "director": "Francis Ford Coppola", "theme": "Mafia", }, } ), TextNode( **{ "text": "Inception", "metadata": { "director": "Christopher Nolan", }, } ), ] vector_store = SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" ), collection_name="metadata_filters_demo", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[
ExactMatchFilter(key="theme", value="Mafia")
llama_index.core.vector_stores.ExactMatchFilter
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext splitter = SentenceSplitter(chunk_size=1024) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, transformations=[splitter], storage_context=storage_context ) query_str = "Can you tell me about the key concepts for safety finetuning" from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() query_embedding = embed_model.get_query_embedding(query_str) from llama_index.core.vector_stores import VectorStoreQuery query_mode = "default" vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=2, mode=query_mode ) query_result = vector_store.query(vector_store_query) query_result from llama_index.core.schema import NodeWithScore from typing import Optional nodes_with_scores = [] for index, node in enumerate(query_result.nodes): score: Optional[float] = None if query_result.similarities is not None: score = query_result.similarities[index] nodes_with_scores.append(NodeWithScore(node=node, score=score)) from llama_index.core.response.notebook_utils import display_source_node for node in nodes_with_scores: display_source_node(node, source_length=1000) from llama_index.core import QueryBundle from llama_index.core.retrievers import BaseRetriever from typing import Any, List class PineconeRetriever(BaseRetriever): """Retriever over a pinecone vector store.""" def __init__( self, vector_store: PineconeVectorStore, embed_model: Any, query_mode: str = "default", similarity_top_k: int = 2, ) -> None: """Init params.""" self._vector_store = vector_store self._embed_model = embed_model self._query_mode = query_mode self._similarity_top_k = similarity_top_k super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve.""" query_embedding = embed_model.get_query_embedding(query_str) vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=self._similarity_top_k, mode=self._query_mode, ) query_result = vector_store.query(vector_store_query) nodes_with_scores = [] for index, node in enumerate(query_result.nodes): score: Optional[float] = None if query_result.similarities is not None: score = query_result.similarities[index] nodes_with_scores.append(NodeWithScore(node=node, score=score)) return nodes_with_scores retriever = PineconeRetriever( vector_store, embed_model, query_mode="default", similarity_top_k=2 ) retrieved_nodes = retriever.retrieve(query_str) for node in retrieved_nodes:
display_source_node(node, source_length=1000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-pathway') get_ipython().system('pip install pathway') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/'") get_ipython().system("wget 'https://gist.githubusercontent.com/janchorowski/dd22a293f3d99d1b726eedc7d46d2fc0/raw/pathway_readme.md' -O 'data/pathway_readme.md'") import getpass import os if "OPENAI_API_KEY" not in os.environ: os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.ERROR) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import pathway as pw data_sources = [] data_sources.append( pw.io.fs.read( "./data", format="binary", mode="streaming", with_metadata=True, ) # This creates a `pathway` connector that tracks ) from llama_index.core.retrievers import PathwayVectorServer from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.node_parser import TokenTextSplitter embed_model = OpenAIEmbedding(embed_batch_size=10) transformations_example = [ TokenTextSplitter( chunk_size=150, chunk_overlap=10, separator=" ", ), embed_model, ] processing_pipeline = PathwayVectorServer( *data_sources, transformations=transformations_example, ) PATHWAY_HOST = "127.0.0.1" PATHWAY_PORT = 8754 processing_pipeline.run_server( host=PATHWAY_HOST, port=PATHWAY_PORT, with_cache=False, threaded=True ) from llama_index.retrievers.pathway import PathwayRetriever retriever =
PathwayRetriever(host=PATHWAY_HOST, port=PATHWAY_PORT)
llama_index.retrievers.pathway.PathwayRetriever
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().system('pip install -q llama-index google-generativeai') get_ipython().run_line_magic('env', 'GOOGLE_API_KEY=...') import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.llms.gemini import Gemini resp = Gemini().complete("Write a poem about a magic backpack") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.gemini import Gemini messages = [ ChatMessage(role="user", content="Hello friend!"), ChatMessage(role="assistant", content="Yarr what is shakin' matey?"), ChatMessage( role="user", content="Help me decide what to have for dinner." ), ] resp = Gemini().chat(messages) print(resp) from llama_index.llms.gemini import Gemini llm = Gemini() resp = llm.stream_complete( "The story of Sourcrust, the bread creature, is really interesting. It all started when..." ) for r in resp: print(r.text, end="") from llama_index.llms.gemini import Gemini from llama_index.core.llms import ChatMessage llm = Gemini() messages = [
ChatMessage(role="user", content="Hello friend!")
llama_index.core.llms.ChatMessage
get_ipython().system('pip install llama-index') get_ipython().system('pip install wget') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-azureaisearch') get_ipython().run_line_magic('pip', 'install azure-search-documents==11.4.0') get_ipython().run_line_magic('llama-index-embeddings-azure-openai', '') get_ipython().run_line_magic('llama-index-llms-azure-openai', '') import logging import sys from azure.core.credentials import AzureKeyCredential from azure.search.documents import SearchClient from azure.search.documents.indexes import SearchIndexClient from IPython.display import Markdown, display from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.core.settings import Settings from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore from llama_index.vector_stores.azureaisearch import ( IndexManagement, MetadataIndexFieldType, ) aoai_api_key = "YOUR_AZURE_OPENAI_API_KEY" aoai_endpoint = "YOUR_AZURE_OPENAI_ENDPOINT" aoai_api_version = "2023-05-15" llm = AzureOpenAI( model="YOUR_AZURE_OPENAI_COMPLETION_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_COMPLETION_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) embed_model = AzureOpenAIEmbedding( model="YOUR_AZURE_OPENAI_EMBEDDING_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY" search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT" search_service_api_version = "2023-11-01" credential = AzureKeyCredential(search_service_api_key) index_name = "llamaindex-vector-demo" index_client = SearchIndexClient( endpoint=search_service_endpoint, credential=credential, ) search_client = SearchClient( endpoint=search_service_endpoint, index_name=index_name, credential=credential, ) metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=index_client, filterable_metadata_field_keys=metadata_fields, index_name=index_name, index_management=IndexManagement.CREATE_IF_NOT_EXISTS, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", language_analyzer="en.lucene", vector_algorithm_type="exhaustiveKnn", ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("../data/paul_graham/").load_data() storage_context = StorageContext.from_defaults(vector_store=vector_store) Settings.llm = llm Settings.embed_model = embed_model index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine(similarity_top_k=3) response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) response = query_engine.query( "What did the author learn?", ) display(Markdown(f"<b>{response}</b>")) index_name = "llamaindex-vector-demo" metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=search_client, filterable_metadata_field_keys=metadata_fields, index_management=IndexManagement.VALIDATE_INDEX, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( [], storage_context=storage_context, ) query_engine = index.as_query_engine() response = query_engine.query("What was a hard moment for the author?") display(Markdown(f"<b>{response}</b>")) response = query_engine.query("Who is the author?") display(Markdown(f"<b>{response}</b>")) import time query_engine = index.as_query_engine(streaming=True) response = query_engine.query("What happened at interleaf?") start_time = time.time() token_count = 0 for token in response.response_gen: print(token, end="") token_count += 1 time_elapsed = time.time() - start_time tokens_per_second = token_count / time_elapsed print(f"\n\nStreamed output at {tokens_per_second} tokens/s") response = query_engine.query("What colour is the sky?") display(Markdown(f"<b>{response}</b>")) from llama_index.core import Document index.insert_nodes([Document(text="The sky is indigo today")]) response = query_engine.query("What colour is the sky?") display(Markdown(f"<b>{response}</b>")) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", }, ), ] index.insert_nodes(nodes) from llama_index.core.vector_stores.types import ( MetadataFilters, ExactMatchFilter, ) filters = MetadataFilters( filters=[
ExactMatchFilter(key="theme", value="Mafia")
llama_index.core.vector_stores.types.ExactMatchFilter
import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import ( FixedRecencyPostprocessor, EmbeddingRecencyPostprocessor, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.core.response.notebook_utils import display_response from llama_index.core import StorageContext def get_file_metadata(file_name: str): """Get file metadata.""" if "v1" in file_name: return {"date": "2020-01-01"} elif "v2" in file_name: return {"date": "2020-02-03"} elif "v3" in file_name: return {"date": "2022-04-12"} else: raise ValueError("invalid file") documents = SimpleDirectoryReader( input_files=[ "test_versioned_data/paul_graham_essay_v1.txt", "test_versioned_data/paul_graham_essay_v2.txt", "test_versioned_data/paul_graham_essay_v3.txt", ], file_metadata=get_file_metadata, ).load_data() from llama_index.core import Settings Settings.text_splitter = SentenceSplitter(chunk_size=512) nodes = Settings.text_splitter.get_nodes_from_documents(documents) docstore = SimpleDocumentStore() docstore.add_documents(nodes) storage_context = StorageContext.from_defaults(docstore=docstore) print(documents[2].get_text()) index = VectorStoreIndex(nodes, storage_context=storage_context) node_postprocessor = FixedRecencyPostprocessor() node_postprocessor_emb = EmbeddingRecencyPostprocessor() query_engine = index.as_query_engine( similarity_top_k=3, ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) query_engine = index.as_query_engine( similarity_top_k=3, node_postprocessors=[node_postprocessor] ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) query_engine = index.as_query_engine( similarity_top_k=3, node_postprocessors=[node_postprocessor_emb] ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) from llama_index.core import SummaryIndex query_str = ( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?" ) query_engine = index.as_query_engine( similarity_top_k=3, response_mode="no_text" ) init_response = query_engine.query( query_str, ) resp_nodes = [n.node for n in init_response.source_nodes] summary_index =
SummaryIndex(resp_nodes)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray') get_ipython().system('pip install llama-index') import os import sys import logging import textwrap import warnings warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "false" from llama_index.core import ( GPTVectorStoreIndex, SimpleDirectoryReader, Document, ) from llama_index.vector_stores.docarray import DocArrayHnswVectorStore from IPython.display import Markdown, display import os os.environ["OPENAI_API_KEY"] = "<your openai key>" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) from llama_index.core import StorageContext vector_store = DocArrayHnswVectorStore(work_dir="hnsw_index") storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
import os from llama_index.networks import ( NetworkQueryEngine, ContributorClient, ) from llama_index.llms.openai import OpenAI import nest_asyncio nest_asyncio.apply() contributors = [ ContributorClient.from_config_file( env_file=f"./client-env-files/.env.contributor_{ix}.client" ) for ix in range(1, 4) ] api_key = os.environ.get("OPENAI_API_KEY") llm = OpenAI(api_key=api_key) network_query_engine =
NetworkQueryEngine.from_args(contributors=contributors, llm=llm)
llama_index.networks.NetworkQueryEngine.from_args
get_ipython().run_line_magic('pip', 'install llama-index-readers-database') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from __future__ import absolute_import import os os.environ["OPENAI_API_KEY"] = "" from llama_index.readers.database import DatabaseReader from llama_index.core import VectorStoreIndex db = DatabaseReader( scheme="postgresql", # Database Scheme host="localhost", # Database Host port="5432", # Database Port user="postgres", # Database User password="FakeExamplePassword", # Database Password dbname="postgres", # Database Name ) print(type(db)) print(type(db.load_data)) print(type(db.sql_database)) print(type(db.sql_database.from_uri)) print(type(db.sql_database.get_single_table_info)) print(type(db.sql_database.get_table_columns)) print(type(db.sql_database.get_usable_table_names)) print(type(db.sql_database.insert_into_table)) print(type(db.sql_database.run_sql)) print(type(db.sql_database.dialect)) print(type(db.sql_database.engine)) print(type(db.sql_database)) db_from_sql_database = DatabaseReader(sql_database=db.sql_database) print(type(db_from_sql_database)) print(type(db.sql_database.engine)) db_from_engine = DatabaseReader(engine=db.sql_database.engine) print(type(db_from_engine)) print(type(db.uri)) db_from_uri = DatabaseReader(uri=db.uri) print(type(db_from_uri)) query = f""" SELECT CONCAT(name, ' is ', age, ' years old.') AS text FROM public.users WHERE age >= 18 """ texts = db.sql_database.run_sql(command=query) print(type(texts)) print(texts) documents = db.load_data(query=query) print(type(documents)) print(documents) index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-nebula') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-azure-openai') get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import logging import sys logging.basicConfig( stream=sys.stdout, level=logging.INFO ) # logging.DEBUG for more verbose output from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.storage.kvstore.firestore import FirestoreKVStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.index_store.firestore import FirestoreIndexStore kvstore =
FirestoreKVStore()
llama_index.storage.kvstore.firestore.FirestoreKVStore
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool = AgentFnComponent(fn=run_tool_fn) def process_response_fn( task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep ): """Process response.""" state["current_reasoning"].append(response_step) response_str = response_step.response state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER)) state["memory"].put( ChatMessage(content=response_str, role=MessageRole.ASSISTANT) ) return {"response_str": response_str, "is_done": True} process_response = AgentFnComponent(fn=process_response_fn) def process_agent_response_fn( task: Task, state: Dict[str, Any], response_dict: dict ): """Process agent response.""" return (
AgentChatResponse(response_dict["response_str"])
llama_index.core.agent.AgentChatResponse
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import PairwiseComparisonEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4 = PairwiseComparisonEvaluator(llm=gpt4) documents = SimpleDirectoryReader("./test_wiki_data/").load_data() splitter_512 = SentenceSplitter(chunk_size=512) vector_index1 = VectorStoreIndex.from_documents( documents, transformations=[splitter_512] ) splitter_128 =
SentenceSplitter(chunk_size=128)
llama_index.core.node_parser.SentenceSplitter
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec from llama_index.tools.google_search.base import GoogleSearchToolSpec google_spec = GoogleSearchToolSpec(key="your-key", engine="your-engine") tools = LoadAndSearchToolSpec.from_defaults( google_spec.to_tool_list()[0], ).to_tool_list() agent =
OpenAIAgent.from_tools(tools, verbose=True)
llama_index.agent.OpenAIAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().system('pip install llama-index gradientai -q') import os from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.finetuning import GradientFinetuneEngine os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY") os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>" from pydantic import BaseModel class Album(BaseModel): """Data model for an album.""" name: str artist: str from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.llms.openai import OpenAI from llama_index.llms.gradient import GradientBaseModelLLM from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser openai_handler = LlamaDebugHandler() openai_callback = CallbackManager([openai_handler]) openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback) gradient_handler = LlamaDebugHandler() gradient_callback = CallbackManager([gradient_handler]) base_model_slug = "llama2-7b-chat" gradient_llm = GradientBaseModelLLM( base_model_slug=base_model_slug, max_tokens=300, callback_manager=gradient_callback, is_chat_model=True, ) from llama_index.core.llms import LLMMetadata prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ openai_program = LLMTextCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Album), prompt_template_str=prompt_template_str, llm=openai_llm, verbose=True, ) gradient_program = LLMTextCompletionProgram.from_defaults( output_parser=
PydanticOutputParser(Album)
llama_index.core.output_parsers.PydanticOutputParser
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) TABLE_NAME = os.environ["DYNAMODB_TABLE_NAME"] from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore from llama_index.storage.index_store.dynamodb import DynamoDBIndexStore from llama_index.vector_stores.dynamodb import DynamoDBVectorStore storage_context = StorageContext.from_defaults( docstore=
DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME)
llama_index.storage.docstore.dynamodb.DynamoDBDocumentStore.from_table_name
from llama_index.agent import OpenAIAgent import openai openai.api_key = "sk-your-key" from llama_index.tools.wikipedia.base import WikipediaToolSpec from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec wiki_spec =
WikipediaToolSpec()
llama_index.tools.wikipedia.base.WikipediaToolSpec
get_ipython().system('pip install -q llama-index llama-index-vector-stores-mongodb llama-index-embeddings-fireworks==0.1.2 llama-index-llms-fireworks') get_ipython().system('pip install -q pymongo datasets pandas') import os import getpass fw_api_key = getpass.getpass("Fireworks API Key:") os.environ["FIREWORKS_API_KEY"] = fw_api_key from datasets import load_dataset import pandas as pd dataset = load_dataset("AIatMongoDB/whatscooking.restaurants") dataset_df = pd.DataFrame(dataset["train"]) dataset_df.head(5) from llama_index.core.settings import Settings from llama_index.llms.fireworks import Fireworks from llama_index.embeddings.fireworks import FireworksEmbedding embed_model = FireworksEmbedding( embed_batch_size=512, model_name="nomic-ai/nomic-embed-text-v1.5", api_key=fw_api_key, ) llm = Fireworks( temperature=0, model="accounts/fireworks/models/mixtral-8x7b-instruct", api_key=fw_api_key, ) Settings.llm = llm Settings.embed_model = embed_model import json from llama_index.core import Document from llama_index.core.schema import MetadataMode documents_json = dataset_df.to_json(orient="records") documents_list = json.loads(documents_json) llama_documents = [] for document in documents_list: document["name"] = json.dumps(document["name"]) document["cuisine"] = json.dumps(document["cuisine"]) document["attributes"] = json.dumps(document["attributes"]) document["menu"] = json.dumps(document["menu"]) document["borough"] = json.dumps(document["borough"]) document["address"] = json.dumps(document["address"]) document["PriceRange"] = json.dumps(document["PriceRange"]) document["HappyHour"] = json.dumps(document["HappyHour"]) document["review_count"] = json.dumps(document["review_count"]) document["TakeOut"] = json.dumps(document["TakeOut"]) del document["embedding"] del document["location"] llama_document = Document( text=json.dumps(document), metadata=document, metadata_template="{key}=>{value}", text_template="Metadata: {metadata_str}\n-----\nContent: {content}", ) llama_documents.append(llama_document) print( "\nThe LLM sees this: \n", llama_documents[0].get_content(metadata_mode=MetadataMode.LLM), ) print( "\nThe Embedding model sees this: \n", llama_documents[0].get_content(metadata_mode=MetadataMode.EMBED), ) llama_documents[0] from llama_index.core.node_parser import SentenceSplitter parser = SentenceSplitter() nodes = parser.get_nodes_from_documents(llama_documents) new_nodes = nodes[:2500] node_embeddings = embed_model(new_nodes) for idx, n in enumerate(new_nodes): n.embedding = node_embeddings[idx].embedding if "_id" in n.metadata: del n.metadata["_id"] import pymongo def get_mongo_client(mongo_uri): """Establish connection to the MongoDB.""" try: client = pymongo.MongoClient(mongo_uri) print("Connection to MongoDB successful") return client except pymongo.errors.ConnectionFailure as e: print(f"Connection failed: {e}") return None import os import getpass mongo_uri = getpass.getpass("MONGO_URI:") if not mongo_uri: print("MONGO_URI not set") mongo_client = get_mongo_client(mongo_uri) DB_NAME = "whatscooking" COLLECTION_NAME = "restaurants" db = mongo_client[DB_NAME] collection = db[COLLECTION_NAME] collection.delete_many({}) from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch vector_store = MongoDBAtlasVectorSearch( mongo_client, db_name=DB_NAME, collection_name=COLLECTION_NAME, index_name="vector_index", ) vector_store.add(new_nodes) from llama_index.core import VectorStoreIndex, StorageContext index =
VectorStoreIndex.from_vector_store(vector_store)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex from llama_index.core.graph_stores import SimpleGraphStore from llama_index.llms.openai import OpenAI from llama_index.core import Settings from IPython.display import Markdown, display documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() llm =
OpenAI(temperature=0, model="text-davinci-002")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( TreeIndex, VectorStoreIndex, SimpleDirectoryReader, Response, ) from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import RelevancyEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt3 = OpenAI(temperature=0, model="gpt-3.5-turbo") gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator =
RelevancyEvaluator(llm=gpt3)
llama_index.core.evaluation.RelevancyEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.llms.openai import OpenAI from llama_index.core.tools import QueryEngineTool, ToolMetadata llm_35 = OpenAI(model="gpt-3.5-turbo-0613", temperature=0.3) llm_4 = OpenAI(model="gpt-4-0613", temperature=0.3) try: storage_context = StorageContext.from_defaults( persist_dir="./storage/march" ) march_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/june" ) june_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/sept" ) sept_index = load_index_from_storage(storage_context) index_loaded = True except: index_loaded = False if not index_loaded: march_docs = SimpleDirectoryReader( input_files=["../../data/10q/uber_10q_march_2022.pdf"] ).load_data() june_docs = SimpleDirectoryReader( input_files=["../../data/10q/uber_10q_june_2022.pdf"] ).load_data() sept_docs = SimpleDirectoryReader( input_files=["../../data/10q/uber_10q_sept_2022.pdf"] ).load_data() march_index = VectorStoreIndex.from_documents( march_docs, ) june_index = VectorStoreIndex.from_documents( june_docs, ) sept_index = VectorStoreIndex.from_documents( sept_docs, ) march_index.storage_context.persist(persist_dir="./storage/march") june_index.storage_context.persist(persist_dir="./storage/june") sept_index.storage_context.persist(persist_dir="./storage/sept") march_engine = march_index.as_query_engine(similarity_top_k=3, llm=llm_35) june_engine = june_index.as_query_engine(similarity_top_k=3, llm=llm_35) sept_engine = sept_index.as_query_engine(similarity_top_k=3, llm=llm_35) from llama_index.core.tools import QueryEngineTool query_tool_sept = QueryEngineTool.from_defaults( query_engine=sept_engine, name="sept_2022", description=( f"Provides information about Uber quarterly financials ending" f" September 2022" ), ) query_tool_june = QueryEngineTool.from_defaults( query_engine=june_engine, name="june_2022", description=( f"Provides information about Uber quarterly financials ending June" f" 2022" ), ) query_tool_march = QueryEngineTool.from_defaults( query_engine=march_engine, name="march_2022", description=( f"Provides information about Uber quarterly financials ending March" f" 2022" ), ) query_engine_tools = [query_tool_march, query_tool_june, query_tool_sept] from llama_index.core.agent import ReActAgent from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-0613") base_agent = ReActAgent.from_tools(query_engine_tools, llm=llm, verbose=True) response = base_agent.chat( "Analyze Uber revenue growth over the last few quarters" ) print(str(response)) print(str(response)) response = base_agent.chat( "Can you tell me about the risk factors in the quarter with the highest" " revenue growth?" ) print(str(response)) from llama_index.core.evaluation import DatasetGenerator base_question_gen_query = ( "You are a Teacher/ Professor. Your task is to setup a quiz/examination." " Using the provided context from the Uber March 10Q filing, formulate a" " single question that captures an important fact from the context." " context. Restrict the question to the context information provided." ) dataset_generator = DatasetGenerator.from_documents( march_docs, question_gen_query=base_question_gen_query, llm=llm_35, ) questions = dataset_generator.generate_questions_from_nodes(num=20) questions from llama_index.llms.openai import OpenAI from llama_index.core import PromptTemplate vary_question_tmpl = """\ You are a financial assistant. Given a question over a 2023 Uber 10Q filing, your goal is to generate up to {num_vary} variations of that question that might span multiple 10Q's. This can include compare/contrasting different 10Qs, replacing the current quarter with another quarter, or generating questions that can only be answered over multiple quarters (be creative!) You are given a valid set of 10Q filings. Please only generate question variations that can be answered in that set. For example: Base Question: What was the free cash flow of Uber in March 2023? Valid 10Qs: [March 2023, June 2023, September 2023] Question Variations: What was the free cash flow of Uber in June 2023? Can you compare/contrast the free cash flow of Uber in June/September 2023 and offer explanations for the change? Did the free cash flow of Uber increase of decrease in 2023? Now let's give it a shot! Base Question: {base_question} Valid 10Qs: {valid_10qs} Question Variations: """ def gen_question_variations(base_questions, num_vary=3): """Generate question variations.""" VALID_10Q_STR = "[March 2022, June 2022, September 2022]" llm = OpenAI(model="gpt-4") prompt_tmpl = PromptTemplate(vary_question_tmpl) new_questions = [] for idx, question in enumerate(base_questions): new_questions.append(question) response = llm.complete( prompt_tmpl.format( num_vary=num_vary, base_question=question, valid_10qs=VALID_10Q_STR, ) ) raw_lines = str(response).split("\n") cur_new_questions = [l for l in raw_lines if l != ""] print(f"[{idx}] Original Question: {question}") print(f"[{idx}] Generated Question Variations: {cur_new_questions}") new_questions.extend(cur_new_questions) return new_questions def save_questions(questions, path): with open(path, "w") as f: for question in questions: f.write(question + "\n") def load_questions(path): questions = [] with open(path, "r") as f: for line in f: questions.append(line.strip()) return questions new_questions = gen_question_variations(questions) len(new_questions) train_questions, eval_questions = new_questions[:60], new_questions[60:] save_questions(train_questions, "train_questions_10q.txt") save_questions(eval_questions, "eval_questions_10q.txt") train_questions = load_questions("train_questions_10q.txt") eval_questions = load_questions("eval_questions_10q.txt") from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.agent import ReActAgent finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) from llama_index.core import Settings Settings.context_window = 2048 llm =
OpenAI(model="gpt-4-0613")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system('pip -q install python-dotenv pinecone-client llama-index pymupdf') dotenv_path = ( "env" # Google Colabs will not let you open a .env, but you can set ) with open(dotenv_path, "w") as f: f.write('PINECONE_API_KEY="<your api key>"\n') f.write('PINECONE_ENVIRONMENT="gcp-starter"\n') f.write('OPENAI_API_KEY="<your api key>"\n') import os from dotenv import load_dotenv load_dotenv(dotenv_path=dotenv_path) import pinecone api_key = os.environ["PINECONE_API_KEY"] environment = os.environ["PINECONE_ENVIRONMENT"] pinecone.init(api_key=api_key, environment=environment) index_name = "llamaindex-rag-fs" pinecone.create_index( index_name, dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index(index_name) pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import fitz file_path = "./data/llama2.pdf" doc = fitz.open(file_path) from llama_index.core.node_parser import SentenceSplitter text_parser = SentenceSplitter( chunk_size=1024, ) text_chunks = [] doc_idxs = [] for doc_idx, page in enumerate(doc): page_text = page.get_text("text") cur_text_chunks = text_parser.split_text(page_text) text_chunks.extend(cur_text_chunks) doc_idxs.extend([doc_idx] * len(cur_text_chunks)) from llama_index.core.schema import TextNode nodes = [] for idx, text_chunk in enumerate(text_chunks): node = TextNode( text=text_chunk, ) src_doc_idx = doc_idxs[idx] src_page = doc[src_doc_idx] nodes.append(node) print(nodes[0].metadata) print(nodes[0].get_content(metadata_mode="all")) from llama_index.core.extractors import ( QuestionsAnsweredExtractor, TitleExtractor, ) from llama_index.core.ingestion import IngestionPipeline from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") extractors = [
TitleExtractor(nodes=5, llm=llm)
llama_index.core.extractors.TitleExtractor
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().system('pip install llama-index>=0.9.31 pinecone-client>=3.0.0') import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from pinecone import Pinecone, ServerlessSpec os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" os.environ["OPENAI_API_KEY"] = "sk-..." api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) pc.create_index( name="quickstart", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) pinecone_index = pc.Index("quickstart") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.pinecone import PineconeVectorStore from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import StorageContext if "OPENAI_API_KEY" not in os.environ: raise EnvironmentError(f"Environment variable OPENAI_API_KEY is not set") vector_store =
PineconeVectorStore(pinecone_index=pinecone_index)
llama_index.vector_stores.pinecone.PineconeVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-faiss') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import faiss d = 1536 faiss_index = faiss.IndexFlatL2(d) from llama_index.core import ( SimpleDirectoryReader, load_index_from_storage, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.faiss import FaissVectorStore from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store =
FaissVectorStore(faiss_index=faiss_index)
llama_index.vector_stores.faiss.FaissVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic llm =
OpenAI()
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-readers-google') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SummaryIndex from llama_index.readers.google import GoogleDocsReader from IPython.display import Markdown, display import os document_ids = ["<document_id>"] documents =
GoogleDocsReader()
llama_index.readers.google.GoogleDocsReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.query_pipeline import ( QueryPipeline as QP, Link, InputComponent, ) from llama_index.core.query_engine.pandas import PandasInstructionParser from llama_index.llms.openai import OpenAI from llama_index.core import PromptTemplate get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/docs/examples/data/csv/titanic_train.csv' -O 'titanic_train.csv'") import pandas as pd df = pd.read_csv("./titanic_train.csv") instruction_str = ( "1. Convert the query to executable Python code using Pandas.\n" "2. The final line of code should be a Python expression that can be called with the `eval()` function.\n" "3. The code should represent a solution to the query.\n" "4. PRINT ONLY THE EXPRESSION.\n" "5. Do not quote the expression.\n" ) pandas_prompt_str = ( "You are working with a pandas dataframe in Python.\n" "The name of the dataframe is `df`.\n" "This is the result of `print(df.head())`:\n" "{df_str}\n\n" "Follow these instructions:\n" "{instruction_str}\n" "Query: {query_str}\n\n" "Expression:" ) response_synthesis_prompt_str = ( "Given an input question, synthesize a response from the query results.\n" "Query: {query_str}\n\n" "Pandas Instructions (optional):\n{pandas_instructions}\n\n" "Pandas Output: {pandas_output}\n\n" "Response: " ) pandas_prompt = PromptTemplate(pandas_prompt_str).partial_format( instruction_str=instruction_str, df_str=df.head(5) ) pandas_output_parser = PandasInstructionParser(df) response_synthesis_prompt = PromptTemplate(response_synthesis_prompt_str) llm = OpenAI(model="gpt-3.5-turbo") qp = QP( modules={ "input":
InputComponent()
llama_index.core.query_pipeline.InputComponent
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm =
OpenAI(model="gpt-3.5-turbo", temperature=0.2)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", }, ), TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." ), metadata={ "category": "Business", "country": "United States", }, ), TextNode( text=( "Rihanna is a Barbadian singer, actress, and businesswoman. She" " has achieved significant success in the music industry and is" " known for her versatile musical style." ), metadata={ "category": "Music", "country": "Barbados", }, ), TextNode( text=( "Cristiano Ronaldo is a Portuguese professional footballer who is" " considered one of the greatest football players of all time. He" " has won numerous awards and set multiple records during his" " career." ), metadata={ "category": "Sports", "country": "Portugal", }, ), ] vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index =
VectorStoreIndex(nodes, storage_context=storage_context)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index llama-index-callbacks-langfuse') import os os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-..." os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-..." os.environ[ "LANGFUSE_HOST" ] = "https://cloud.langfuse.com" # 🇪🇺 EU region, 🇺🇸 US region: "https://us.cloud.langfuse.com" os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import global_handler, set_global_handler set_global_handler("langfuse") langfuse_callback_handler = global_handler from llama_index.core import Settings from llama_index.core.callbacks import CallbackManager from langfuse.llama_index import LlamaIndexCallbackHandler langfuse_callback_handler = LlamaIndexCallbackHandler() Settings.callback_manager = CallbackManager([langfuse_callback_handler]) langfuse_callback_handler.flush() get_ipython().system("mkdir -p 'data/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader, VectorStoreIndex documents = SimpleDirectoryReader("data").load_data() index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-.." openai.api_key = os.environ["OPENAI_API_KEY"] from IPython.display import Markdown, display from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, ) engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo") sql_database = SQLDatabase(engine, include_tables=["city_stats"]) sql_database =
SQLDatabase(engine, include_tables=["city_stats"])
llama_index.core.SQLDatabase
get_ipython().run_line_magic('pip', 'install llama-index-llms-openllm') get_ipython().system('pip install "openllm" # use \'openllm[vllm]\' if you have access to GPU') get_ipython().system('pip install llama-index') import os from typing import List, Optional from llama_index.llms.openllm import OpenLLM, OpenLLMAPI from llama_index.core.llms import ChatMessage os.environ[ "OPENLLM_ENDPOINT" ] = "na" # Change this to a remote server that you might run OpenLLM at. local_llm = OpenLLM("HuggingFaceH4/zephyr-7b-alpha") remote_llm = OpenLLMAPI(address="http://localhost:3000") remote_llm = OpenLLMAPI() completion_response = remote_llm.complete("To infinity, and") print(completion_response) for it in remote_llm.stream_complete( "The meaning of time is", max_new_tokens=128 ): print(it, end="", flush=True) async for it in remote_llm.astream_chat( [ ChatMessage( role="system", content="You are acting as Ernest Hemmingway." ), ChatMessage(role="user", content="Hi there!"), ChatMessage(role="assistant", content="Yes?"),
ChatMessage(role="user", content="What is the meaning of life?")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) get_ipython().system('pip install wikipedia') from llama_index.readers.wikipedia import WikipediaReader cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) from llama_index.core import SQLDatabase sql_database =
SQLDatabase(engine, include_tables=["city_stats"])
llama_index.core.SQLDatabase
get_ipython().run_line_magic('pip', 'install llama-index-evaluation-tonic-validate') import json import pandas as pd from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.evaluation.tonic_validate import ( AnswerConsistencyEvaluator, AnswerSimilarityEvaluator, AugmentationAccuracyEvaluator, AugmentationPrecisionEvaluator, RetrievalPrecisionEvaluator, TonicValidateEvaluator, ) question = "What makes Sam Altman a good founder?" reference_answer = "He is smart and has a great force of will." llm_answer = "He is a good founder because he is smart." retrieved_context_list = [ "Sam Altman is a good founder. He is very smart.", "What makes Sam Altman such a good founder is his great force of will.", ] answer_similarity_evaluator = AnswerSimilarityEvaluator() score = await answer_similarity_evaluator.aevaluate( question, llm_answer, retrieved_context_list, reference_response=reference_answer, ) score answer_consistency_evaluator = AnswerConsistencyEvaluator() score = await answer_consistency_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score augmentation_accuracy_evaluator = AugmentationAccuracyEvaluator() score = await augmentation_accuracy_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score augmentation_precision_evaluator = AugmentationPrecisionEvaluator() score = await augmentation_precision_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score retrieval_precision_evaluator = RetrievalPrecisionEvaluator() score = await retrieval_precision_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score tonic_validate_evaluator = TonicValidateEvaluator() scores = await tonic_validate_evaluator.aevaluate( question, llm_answer, retrieved_context_list, reference_response=reference_answer, ) scores.score_dict tonic_validate_evaluator =
TonicValidateEvaluator()
llama_index.evaluation.tonic_validate.TonicValidateEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks') get_ipython().run_line_magic('pip', 'install llama-index') import os os.environ["FIREWORKS_API_KEY"] = "" from llama_index.llms.fireworks import Fireworks llm = Fireworks( model="accounts/fireworks/models/firefunction-v1", temperature=0 ) from pydantic import BaseModel from llama_index.llms.openai.utils import to_openai_tool class Song(BaseModel): """A song with name and artist""" name: str artist: str song_fn = to_openai_tool(Song) response = llm.complete("Generate a song from Beyonce", tools=[song_fn]) tool_calls = response.additional_kwargs["tool_calls"] print(tool_calls) from llama_index.program.openai import OpenAIPydanticProgram prompt_template_str = "Generate a song about {artist_name}" program = OpenAIPydanticProgram.from_defaults( output_cls=Song, prompt_template_str=prompt_template_str, llm=llm ) output = program(artist_name="Eminem") output from llama_index.agent.openai import OpenAIAgent from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool =
FunctionTool.from_defaults(fn=multiply)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.WARNING) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import nest_asyncio nest_asyncio.apply() from llama_index.core import SimpleDirectoryReader, get_response_synthesizer from llama_index.core import DocumentSummaryIndex from llama_index.llms.openai import OpenAI from llama_index.core.node_parser import SentenceSplitter wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) city_docs = [] for wiki_title in wiki_titles: docs = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() docs[0].doc_id = wiki_title city_docs.extend(docs) chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo") splitter = SentenceSplitter(chunk_size=1024) response_synthesizer = get_response_synthesizer( response_mode="tree_summarize", use_async=True ) doc_summary_index = DocumentSummaryIndex.from_documents( city_docs, llm=chatgpt, transformations=[splitter], response_synthesizer=response_synthesizer, show_progress=True, ) doc_summary_index.get_document_summary("Boston") doc_summary_index.storage_context.persist("index") from llama_index.core import load_index_from_storage from llama_index.core import StorageContext storage_context =
StorageContext.from_defaults(persist_dir="index")
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) list_retriever = summary_index.as_retriever() vector_retriever = vector_index.as_retriever() keyword_retriever = keyword_index.as_retriever() from llama_index.core.tools import RetrieverTool list_tool = RetrieverTool.from_defaults( retriever=list_retriever, description=( "Will retrieve all context from Paul Graham's essay on What I Worked" " On. Don't use if the question only requires more specific context." ), ) vector_tool = RetrieverTool.from_defaults( retriever=vector_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) keyword_tool = RetrieverTool.from_defaults( retriever=keyword_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On (using entities mentioned in query)" ), ) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.retrievers import RouterRetriever from llama_index.core.response.notebook_utils import display_source_node retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ list_tool, vector_tool, ], ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes:
display_source_node(node)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.llms.openai import OpenAI resp = OpenAI().complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.openai import OpenAI messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = OpenAI().chat(messages) print(resp) from llama_index.llms.openai import OpenAI llm = OpenAI() resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage llm = OpenAI() messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.stream_chat(messages) for r in resp: print(r.delta, end="") from llama_index.llms.openai import OpenAI llm = OpenAI(model="text-davinci-003") resp = llm.complete("Paul Graham is ") print(resp) messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.chat(messages) print(resp) from pydantic import BaseModel from llama_index.core.llms.openai_utils import to_openai_tool class Song(BaseModel): """A song with name and artist""" name: str artist: str song_fn =
to_openai_tool(Song)
llama_index.core.llms.openai_utils.to_openai_tool
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) MONGO_URI = os.environ["MONGO_URI"] from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.index_store.mongodb import MongoIndexStore storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index =
VectorStoreIndex(nodes, storage_context=storage_context)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.llama_pack import download_llama_pack StockMarketDataQueryEnginePack = download_llama_pack( "StockMarketDataQueryEnginePack", "./stock_market_data_pack", ) from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-4-1106-preview")
llama_index.llms.openai.OpenAI
get_ipython().system(' pip install -q llama-index upstash-vector') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.vector_stores import UpstashVectorStore from llama_index.core import StorageContext import textwrap import openai openai.api_key = "sk-..." get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("# Documents:", len(documents)) vector_store = UpstashVectorStore(url="https://...", token="...") storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().system('pip install llama-index s3fs boto3') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay1.txt'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay2.txt'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay3.txt'") import boto3 endpoint_url = ( "http://localhost:4566" # use this line if you are using S3 via localstack ) bucket_name = "llama-index-test-bucket" s3 = boto3.resource("s3", endpoint_url=endpoint_url) s3.create_bucket(Bucket=bucket_name) bucket = s3.Bucket(bucket_name) bucket.upload_file( "data/paul_graham/paul_graham_essay1.txt", "essays/paul_graham_essay1.txt" ) bucket.upload_file( "data/paul_graham/paul_graham_essay2.txt", "essays/more_essays/paul_graham_essay2.txt", ) bucket.upload_file( "data/paul_graham/paul_graham_essay3.txt", "essays/even_more_essays/paul_graham_essay3.txt", ) from llama_index.core import SimpleDirectoryReader from s3fs import S3FileSystem s3_fs = S3FileSystem(anon=False, endpoint_url=endpoint_url) reader = SimpleDirectoryReader( input_dir=bucket_name, fs=s3_fs, recursive=True, # recursively searches all subdirectories ) docs = reader.load_data() print(f"Loaded {len(docs)} docs") reader =
SimpleDirectoryReader(input_dir="./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "[email protected]" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index = GoogleIndex.from_corpus(corpus_id="") query_engine = google_index.as_query_engine() response = query_engine.query("which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.7, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) reranker = LLMRerank( top_n=5, llm=Gemini(api_key=GOOGLE_API_KEY), ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[reranker], ) response = query_engine.query("Which program did this author attend?") print(response.response) from llama_index.core.postprocessor import SentenceTransformerRerank sbert_rerank = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.1, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[sbert_rerank], ) response = query_engine.query("Which program did this author attend?") print(response.response) import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import Settings import qdrant_client Settings.chunk_size = 256 client = qdrant_client.QdrantClient(path="qdrant_retrieval_2") vector_store = QdrantVectorStore(client=client, collection_name="collection") qdrant_index = VectorStoreIndex.from_documents(documents) storage_context = StorageContext.from_defaults(vector_store=vector_store) query_engine = qdrant_index.as_query_engine() response = query_engine.query("Which program did this author attend?") print(response) for r in response.source_nodes: display_source_node(r, source_length=1000) query_engine = qdrant_index.as_query_engine() response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response) from llama_index.core import get_response_synthesizer reranker = LLMRerank(top_n=3) retriever = qdrant_index.as_retriever(similarity_top_k=3) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=get_response_synthesizer( response_mode="tree_summarize", ), node_postprocessors=[reranker], ) response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response.response) from llama_index.core import get_response_synthesizer sbert_rerank = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) retriever = qdrant_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=get_response_synthesizer( response_mode="tree_summarize", ), node_postprocessors=[sbert_rerank], ) response = query_engine.query( "Which universities or schools or programs did this author attend?" ) print(response.response) from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.vectara import VectaraIndex vectara_customer_id = "" vectara_corpus_id = "" vectara_api_key = "" documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vectara_index = VectaraIndex.from_documents( documents, vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key, ) vectara_query_engine = vectara_index.as_query_engine(similarity_top_k=5) response = vectara_query_engine.query("Which program did this author attend?") print(response) for r in response.source_nodes: display_source_node(r, source_length=1000) get_ipython().system('git -C ColBERT/ pull || git clone https://github.com/stanford-futuredata/ColBERT.git') import sys sys.path.insert(0, "ColBERT/") get_ipython().system('pip install faiss-cpu torch') from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.colbert import ColbertIndex from llama_index.llms.openai import OpenAI import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-ollama') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import LLMRerank from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_size = 512 from pathlib import Path import requests wiki_titles = [ "Vincent van Gogh", ] data_path = Path("data_wiki") for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) documents =
SimpleDirectoryReader("./data_wiki/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-litellm') get_ipython().system('pip install llama-index') import os from llama_index.llms.litellm import LiteLLM from llama_index.core.llms import ChatMessage os.environ["OPENAI_API_KEY"] = "your-api-key" os.environ["COHERE_API_KEY"] = "your-api-key" message = ChatMessage(role="user", content="Hey! how's it going?") llm = LiteLLM("gpt-3.5-turbo") chat_response = llm.chat([message]) llm = LiteLLM("command-nightly") chat_response = llm.chat([message]) from llama_index.core.llms import ChatMessage from llama_index.llms.litellm import LiteLLM messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = LiteLLM("gpt-3.5-turbo").chat(messages) print(resp) from llama_index.llms.litellm import LiteLLM llm = LiteLLM("gpt-3.5-turbo") resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.litellm import LiteLLM messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] llm =
LiteLLM("gpt-3.5-turbo")
llama_index.llms.litellm.LiteLLM
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-zep') get_ipython().system('pip install llama-index') import logging import sys from uuid import uuid4 logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import openai from dotenv import load_dotenv load_dotenv() openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.zep import ZepVectorStore get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("../data/paul_graham/").load_data() from llama_index.core import StorageContext zep_api_url = "http://localhost:8000" collection_name = f"graham{uuid4().hex}" vector_store = ZepVectorStore( api_url=zep_api_url, collection_name=collection_name, embedding_dimensions=1536, ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(str(response)) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", }, ), ] collection_name = f"movies{uuid4().hex}" vector_store = ZepVectorStore( api_url=zep_api_url, collection_name=collection_name, embedding_dimensions=1536, ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray') get_ipython().system('pip install llama-index') import os import sys import logging import textwrap import warnings warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "false" from llama_index.core import ( GPTVectorStoreIndex, SimpleDirectoryReader, Document, ) from llama_index.vector_stores.docarray import DocArrayInMemoryVectorStore from IPython.display import Markdown, display import os os.environ["OPENAI_API_KEY"] = "<your openai key>" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) from llama_index.core import StorageContext vector_store = DocArrayInMemoryVectorStore() storage_context = StorageContext.from_defaults(vector_store=vector_store) index = GPTVectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", }, ), ] from llama_index.core import StorageContext vector_store = DocArrayInMemoryVectorStore() storage_context = StorageContext.from_defaults(vector_store=vector_store) index = GPTVectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[
ExactMatchFilter(key="theme", value="Mafia")
llama_index.core.vector_stores.ExactMatchFilter
from llama_index.core import VectorStoreIndex from llama_index.core.objects import ObjectIndex, SimpleObjectNodeMapping obj1 = {"input": "Hey, how's it going"} obj2 = ["a", "b", "c", "d"] obj3 = "llamaindex is an awesome library!" arbitrary_objects = [obj1, obj2, obj3] obj_node_mapping =
SimpleObjectNodeMapping.from_objects(arbitrary_objects)
llama_index.core.objects.SimpleObjectNodeMapping.from_objects
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex from llama_index.core.graph_stores import SimpleGraphStore from llama_index.llms.openai import OpenAI from llama_index.core import Settings from IPython.display import Markdown, display documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() llm = OpenAI(temperature=0, model="text-davinci-002") Settings.llm = llm Settings.chunk_size = 512 from llama_index.core import StorageContext graph_store =
SimpleGraphStore()
llama_index.core.graph_stores.SimpleGraphStore
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm = OpenAI(model="gpt-3.5-turbo") output_parser = PydanticOutputParser(Movies) json_prompt_str = """\ Please generate related movies to {movie_name}. Output with the following JSON format: """ json_prompt_str = output_parser.format(json_prompt_str) json_prompt_tmpl = PromptTemplate(json_prompt_str) p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True) output = p.run(movie_name="Toy Story") output prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) prompt_str2 = """\ Here's some text: {text} Can you rewrite this with a summary of each movie? """ prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") llm_c = llm.as_query_component(streaming=True) p = QueryPipeline( chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True ) output = p.run(movie_name="The Dark Knight") for o in output: print(o.delta, end="") p = QueryPipeline( chain=[ json_prompt_tmpl, llm.as_query_component(streaming=True), output_parser, ], verbose=True, ) output = p.run(movie_name="Toy Story") print(output) from llama_index.postprocessor.cohere_rerank import CohereRerank prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl1 = PromptTemplate(prompt_str1) prompt_str2 = ( "Please write a passage to answer the question\n" "Try to include as many key details as possible.\n" "\n" "\n" "{query_str}\n" "\n" "\n" 'Passage:"""\n' ) prompt_tmpl2 =
PromptTemplate(prompt_str2)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext vector_store = PineconeVectorStore(pinecone_index=pinecone_index) splitter =
SentenceSplitter(chunk_size=1024)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.node_parser import SentenceWindowNodeParser from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) text_splitter = SentenceSplitter() llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model Settings.text_splitter = text_splitter get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() nodes = node_parser.get_nodes_from_documents(documents) base_nodes = text_splitter.get_nodes_from_documents(documents) from llama_index.core import VectorStoreIndex sentence_index = VectorStoreIndex(nodes) base_index = VectorStoreIndex(base_nodes) from llama_index.core.postprocessor import MetadataReplacementPostProcessor query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[ MetadataReplacementPostProcessor(target_metadata_key="window") ], ) window_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(window_response) window = window_response.source_nodes[0].node.metadata["window"] sentence = window_response.source_nodes[0].node.metadata["original_text"] print(f"Window: {window}") print("------------------") print(f"Original Sentence: {sentence}") query_engine = base_index.as_query_engine(similarity_top_k=2) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) query_engine = base_index.as_query_engine(similarity_top_k=5) vector_response = query_engine.query( "What are the concerns surrounding the AMOC?" ) print(vector_response) for source_node in window_response.source_nodes: print(source_node.node.metadata["original_text"]) print("--------") for node in vector_response.source_nodes: print("AMOC mentioned?", "AMOC" in node.node.text) print("--------") print(vector_response.source_nodes[2].node.text) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI import nest_asyncio import random nest_asyncio.apply() len(base_nodes) num_nodes_eval = 30 sample_eval_nodes = random.sample(base_nodes[:200], num_nodes_eval) dataset_generator = DatasetGenerator( sample_eval_nodes, llm=OpenAI(model="gpt-4"), show_progress=True, num_questions_per_chunk=2, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes() eval_dataset.save_json("data/ipcc_eval_qr_dataset.json") eval_dataset =
QueryResponseDataset.from_json("data/ipcc_eval_qr_dataset.json")
llama_index.core.evaluation.QueryResponseDataset.from_json
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt' -O pg_essay.txt") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader(input_files=["pg_essay.txt"]) documents = reader.load_data() from llama_index.core.query_pipeline import ( QueryPipeline, InputComponent, ArgPackComponent, ) from typing import Dict, Any, List, Optional from llama_index.core.llama_pack import BaseLlamaPack from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI from llama_index.core import Document, VectorStoreIndex from llama_index.core.response_synthesizers import TreeSummarize from llama_index.core.schema import NodeWithScore, TextNode from llama_index.core.node_parser import SentenceSplitter llm = OpenAI(model="gpt-3.5-turbo") chunk_sizes = [128, 256, 512, 1024] query_engines = {} for chunk_size in chunk_sizes: splitter = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=0) nodes = splitter.get_nodes_from_documents(documents) vector_index = VectorStoreIndex(nodes) query_engines[str(chunk_size)] = vector_index.as_query_engine(llm=llm) p = QueryPipeline(verbose=True) module_dict = { **query_engines, "input":
InputComponent()
llama_index.core.query_pipeline.InputComponent
from llama_hub.semanticscholar.base import SemanticScholarReader import os import openai from llama_index.llms import OpenAI from llama_index.query_engine import CitationQueryEngine from llama_index import ( VectorStoreIndex, StorageContext, load_index_from_storage, ServiceContext, ) from llama_index.response.notebook_utils import display_response s2reader = SemanticScholarReader() openai.api_key = os.environ["OPENAI_API_KEY"] service_context = ServiceContext.from_defaults( llm=OpenAI(model="gpt-3.5-turbo", temperature=0) ) query_space = "large language models" full_text = True total_papers = 50 persist_dir = ( "./citation_" + query_space + "_" + str(total_papers) + "_" + str(full_text) ) if not os.path.exists(persist_dir): documents = s2reader.load_data(query_space, total_papers, full_text=full_text) index =
VectorStoreIndex.from_documents(documents, service_context=service_context)
llama_index.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') get_ipython().system('pip install llama-index chromadb --quiet') get_ipython().system('pip install chromadb==0.4.17') get_ipython().system('pip install sentence-transformers') get_ipython().system('pip install pydantic==1.10.11') get_ipython().system('pip install open-clip-torch') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.huggingface import HuggingFaceEmbedding from IPython.display import Markdown, display import chromadb import os import openai OPENAI_API_KEY = "" openai.api_key = OPENAI_API_KEY os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY import requests def get_wikipedia_images(title): response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "imageinfo", "iiprop": "url|dimensions|mime", "generator": "images", "gimlimit": "50", }, ).json() image_urls = [] for page in response["query"]["pages"].values(): if page["imageinfo"][0]["url"].endswith(".jpg") or page["imageinfo"][ 0 ]["url"].endswith(".png"): image_urls.append(page["imageinfo"][0]["url"]) return image_urls from pathlib import Path import urllib.request image_uuid = 0 MAX_IMAGES_PER_WIKI = 20 wiki_titles = { "Tesla Model X", "Pablo Picasso", "Rivian", "The Lord of the Rings", "The Matrix", "The Simpsons", } data_path = Path("mixed_wiki") if not data_path.exists(): Path.mkdir(data_path) for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) images_per_wiki = 0 try: list_img_urls = get_wikipedia_images(title) for url in list_img_urls: if url.endswith(".jpg") or url.endswith(".png"): image_uuid += 1 urllib.request.urlretrieve( url, data_path / f"{image_uuid}.jpg" ) images_per_wiki += 1 if images_per_wiki > MAX_IMAGES_PER_WIKI: break except: print(str(Exception("No images found for Wikipedia page: ")) + title) continue from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction embedding_function = OpenCLIPEmbeddingFunction() from llama_index.core.indices import MultiModalVectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import SimpleDirectoryReader, StorageContext from chromadb.utils.data_loaders import ImageLoader image_loader = ImageLoader() chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection( "multimodal_collection", embedding_function=embedding_function, data_loader=image_loader, ) documents = SimpleDirectoryReader("./mixed_wiki/").load_data() vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, ) retriever = index.as_retriever(similarity_top_k=50) retrieval_results = retriever.retrieve("Picasso famous paintings") from llama_index.core.schema import ImageNode from llama_index.core.response.notebook_utils import ( display_source_node, display_image_uris, ) image_results = [] MAX_RES = 5 cnt = 0 for r in retrieval_results: if isinstance(r.node, ImageNode): image_results.append(r.node.metadata["file_path"]) else: if cnt < MAX_RES: display_source_node(r) cnt += 1
display_image_uris(image_results, [3, 3], top_k=2)
llama_index.core.response.notebook_utils.display_image_uris
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-awadb') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, ) from IPython.display import Markdown, display import openai openai.api_key = "" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.vector_stores.awadb import AwaDBVectorStore embed_model =
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
llama_index.embeddings.huggingface.HuggingFaceEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [ SentenceSplitter(chunk_size=c, chunk_overlap=20) for c in sub_chunk_sizes ] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [ IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes ] all_nodes.extend(sub_inodes) original_node = IndexNode.from_text_node(base_node, base_node.node_id) all_nodes.append(original_node) all_nodes_dict = {n.node_id: n for n in all_nodes} vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model) vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2) retriever_chunk = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_chunk}, node_dict=all_nodes_dict, verbose=True, ) nodes = retriever_chunk.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for node in nodes: display_source_node(node, source_length=2000) query_engine_chunk = RetrieverQueryEngine.from_args(retriever_chunk, llm=llm) response = query_engine_chunk.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) import nest_asyncio nest_asyncio.apply() from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode from llama_index.core.extractors import ( SummaryExtractor, QuestionsAnsweredExtractor, ) extractors = [ SummaryExtractor(summaries=["self"], show_progress=True),
QuestionsAnsweredExtractor(questions=5, show_progress=True)
llama_index.core.extractors.QuestionsAnsweredExtractor
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) list_retriever = summary_index.as_retriever() vector_retriever = vector_index.as_retriever() keyword_retriever = keyword_index.as_retriever() from llama_index.core.tools import RetrieverTool list_tool = RetrieverTool.from_defaults( retriever=list_retriever, description=( "Will retrieve all context from Paul Graham's essay on What I Worked" " On. Don't use if the question only requires more specific context." ), ) vector_tool = RetrieverTool.from_defaults( retriever=vector_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) keyword_tool = RetrieverTool.from_defaults( retriever=keyword_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On (using entities mentioned in query)" ), ) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.retrievers import RouterRetriever from llama_index.core.response.notebook_utils import display_source_node retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ list_tool, vector_tool, ], ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) retriever = RouterRetriever( selector=
PydanticMultiSelector.from_defaults(llm=llm)
llama_index.core.selectors.PydanticMultiSelector.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.core.storage.docstore import SimpleDocumentStore docstore = SimpleDocumentStore() docstore.add_documents(nodes) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(docstore=docstore) summary_index =
SummaryIndex(nodes, storage_context=storage_context)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-rungpt') get_ipython().system('pip install llama-index') get_ipython().system('pip install rungpt') get_ipython().system('rungpt serve decapoda-research/llama-7b-hf --precision fp16 --device_map balanced') from llama_index.llms.rungpt import RunGptLLM llm = RunGptLLM() promot = "What public transportation might be available in a city?" response = llm.complete(promot) print(response) from llama_index.core.llms import ChatMessage, MessageRole from llama_index.llms.rungpt import RunGptLLM messages = [ ChatMessage( role=MessageRole.USER, content="Now, I want you to do some math for me.", ), ChatMessage( role=MessageRole.ASSISTANT, content="Sure, I would like to help you." ), ChatMessage( role=MessageRole.USER, content="How many points determine a straight line?", ), ] llm = RunGptLLM() response = llm.chat(messages=messages, temperature=0.8, max_tokens=15) print(response) promot = "What public transportation might be available in a city?" response =
RunGptLLM()
llama_index.llms.rungpt.RunGptLLM
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-cpp') get_ipython().system('pip install llama-index lm-format-enforcer llama-cpp-python') import lmformatenforcer import re from llama_index.core.prompts.lmformatenforcer_utils import ( activate_lm_format_enforcer, build_lm_format_enforcer_function, ) regex = r'"Hello, my name is (?P<name>[a-zA-Z]*)\. I was born in (?P<hometown>[a-zA-Z]*). Nice to meet you!"' from llama_index.llms.llama_cpp import LlamaCPP llm =
LlamaCPP()
llama_index.llms.llama_cpp.LlamaCPP
get_ipython().system("mkdir -p 'data/'") get_ipython().system("curl 'https://arxiv.org/pdf/2307.09288.pdf' -o 'data/llama2.pdf'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("data").load_data() get_ipython().run_line_magic('pip', 'install llama-index-packs-subdoc-summary llama-index-llms-openai llama-index-embeddings-openai') from llama_index.packs.subdoc_summary import SubDocSummaryPack from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding subdoc_summary_pack = SubDocSummaryPack( documents, parent_chunk_size=8192, # default, child_chunk_size=512, # default llm=OpenAI(model="gpt-3.5-turbo"), embed_model=
OpenAIEmbedding()
llama_index.embeddings.openai.OpenAIEmbedding
import os import sys import logging from dotenv import load_dotenv logging.basicConfig(stream=sys.stderr, level=logging.INFO) logger = logging.getLogger(__name__) load_dotenv() # take environment variables from .env. logger.debug(f"NewRelic application: {os.getenv('NEW_RELIC_APP_NAME')}") import os from time import time from nr_openai_observability import monitor from llama_index import VectorStoreIndex, download_loader if os.getenv("NEW_RELIC_APP_NAME") and os.getenv("NEW_RELIC_LICENSE_KEY"): monitor.initialization(application_name=os.getenv("NEW_RELIC_APP_NAME")) RayyanReader = download_loader("RayyanReader") loader = RayyanReader(credentials_path="rayyan-creds.json") documents = loader.load_data(review_id=746345) logger.info("Indexing articles...") t1 = time() review_index =
VectorStoreIndex.from_documents(documents)
llama_index.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.llms.openai import OpenAI from llama_index.core.tools import QueryEngineTool, ToolMetadata llm = OpenAI(model="gpt-4-1106-preview") get_ipython().system("mkdir -p 'data/10q/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_march_2022.pdf' -O 'data/10q/uber_10q_march_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_june_2022.pdf' -O 'data/10q/uber_10q_june_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_sept_2022.pdf' -O 'data/10q/uber_10q_sept_2022.pdf'") march_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_march_2022.pdf"] ).load_data() june_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_june_2022.pdf"] ).load_data() sept_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_sept_2022.pdf"] ).load_data() import os def get_tool(name, full_name, documents=None): if not os.path.exists(f"./data/{name}"): vector_index = VectorStoreIndex.from_documents(documents) vector_index.storage_context.persist(persist_dir=f"./data/{name}") else: vector_index = load_index_from_storage( StorageContext.from_defaults(persist_dir=f"./data/{name}"), ) query_engine = vector_index.as_query_engine(similarity_top_k=3, llm=llm) query_engine_tool = QueryEngineTool( query_engine=query_engine, metadata=ToolMetadata( name=name, description=( "Provides information about Uber quarterly financials ending" f" {full_name}" ), ), ) return query_engine_tool march_tool = get_tool("march_2022", "March 2022", documents=march_2022) june_tool = get_tool("june_2022", "June 2022", documents=june_2022) sept_tool = get_tool("sept_2022", "September 2022", documents=sept_2022) query_engine_tools = [march_tool, june_tool, sept_tool] from llama_index.core.agent import AgentRunner, ReActAgent from llama_index.agent.openai import OpenAIAgentWorker, OpenAIAgent from llama_index.agent.openai import OpenAIAgentWorker agent_llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-redis') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('pip install redis') get_ipython().system('docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:latest') import os os.environ["OPENAI_API_KEY"] = "sk-..." get_ipython().system('rm -rf test_redis_data') get_ipython().system('mkdir -p test_redis_data') get_ipython().system('echo "This is a test file: one!" > test_redis_data/test1.txt') get_ipython().system('echo "This is a test file: two!" > test_redis_data/test2.txt') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( "./test_redis_data", filename_as_id=True ).load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.ingestion import ( DocstoreStrategy, IngestionPipeline, IngestionCache, ) from llama_index.core.ingestion.cache import RedisCache from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.core.node_parser import SentenceSplitter from llama_index.vector_stores.redis import RedisVectorStore embed_model =
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
llama_index.embeddings.huggingface.HuggingFaceEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm = OpenAI(model="gpt-3.5-turbo") output_parser = PydanticOutputParser(Movies) json_prompt_str = """\ Please generate related movies to {movie_name}. Output with the following JSON format: """ json_prompt_str = output_parser.format(json_prompt_str) json_prompt_tmpl = PromptTemplate(json_prompt_str) p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True) output = p.run(movie_name="Toy Story") output prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) prompt_str2 = """\ Here's some text: {text} Can you rewrite this with a summary of each movie? """ prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") llm_c = llm.as_query_component(streaming=True) p = QueryPipeline( chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True ) output = p.run(movie_name="The Dark Knight") for o in output: print(o.delta, end="") p = QueryPipeline( chain=[ json_prompt_tmpl, llm.as_query_component(streaming=True), output_parser, ], verbose=True, ) output = p.run(movie_name="Toy Story") print(output) from llama_index.postprocessor.cohere_rerank import CohereRerank prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl1 = PromptTemplate(prompt_str1) prompt_str2 = ( "Please write a passage to answer the question\n" "Try to include as many key details as possible.\n" "\n" "\n" "{query_str}\n" "\n" "\n" 'Passage:"""\n' ) prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") retriever = index.as_retriever(similarity_top_k=5) p = QueryPipeline( chain=[prompt_tmpl1, llm, prompt_tmpl2, llm, retriever], verbose=True ) nodes = p.run(topic="college") len(nodes) from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.response_synthesizers import TreeSummarize prompt_str = "Please generate a question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") retriever = index.as_retriever(similarity_top_k=3) reranker = CohereRerank() summarizer = TreeSummarize(llm=llm) p = QueryPipeline(verbose=True) p.add_modules( { "llm": llm, "prompt_tmpl": prompt_tmpl, "retriever": retriever, "summarizer": summarizer, "reranker": reranker, } ) p.add_link("prompt_tmpl", "llm") p.add_link("llm", "retriever") p.add_link("retriever", "reranker", dest_key="nodes") p.add_link("llm", "reranker", dest_key="query_str") p.add_link("reranker", "summarizer", dest_key="nodes") p.add_link("llm", "summarizer", dest_key="query_str") print(summarizer.as_query_component().input_keys) from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(p.dag) net.show("rag_dag.html") response = p.run(topic="YC") print(str(response)) response = await p.arun(topic="YC") print(str(response)) from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.response_synthesizers import TreeSummarize from llama_index.core.query_pipeline import InputComponent retriever = index.as_retriever(similarity_top_k=5) summarizer = TreeSummarize(llm=OpenAI(model="gpt-3.5-turbo")) reranker =
CohereRerank()
llama_index.postprocessor.cohere_rerank.CohereRerank
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-ollama') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import LLMRerank from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_size = 512 from pathlib import Path import requests wiki_titles = [ "Vincent van Gogh", ] data_path = Path("data_wiki") for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) documents = SimpleDirectoryReader("./data_wiki/").load_data() index = VectorStoreIndex.from_documents( documents, ) from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core import QueryBundle from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank import pandas as pd from IPython.display import display, HTML def get_retrieved_nodes( query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False ): query_bundle =
QueryBundle(query_str)
llama_index.core.QueryBundle
get_ipython().system('pip install llama-index-multi-modal-llms-ollama') get_ipython().system('pip install llama-index-readers-file') get_ipython().system('pip install unstructured') get_ipython().system('pip install llama-index-embeddings-huggingface') get_ipython().system('pip install llama-index-vector-stores-qdrant') get_ipython().system('pip install llama-index-embeddings-clip') from llama_index.multi_modal_llms.ollama import OllamaMultiModal mm_model = OllamaMultiModal(model="llava:13b") from pathlib import Path from llama_index.core import SimpleDirectoryReader from PIL import Image import matplotlib.pyplot as plt input_image_path = Path("restaurant_images") if not input_image_path.exists(): Path.mkdir(input_image_path) get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1GlqcNJhGGbwLKjJK1QJ_nyswCTQ2K2Fq" -O ./restaurant_images/fried_chicken.png') image_documents = SimpleDirectoryReader("./restaurant_images").load_data() imageUrl = "./restaurant_images/fried_chicken.png" image = Image.open(imageUrl).convert("RGB") plt.figure(figsize=(16, 5)) plt.imshow(image) from pydantic import BaseModel class Restaurant(BaseModel): """Data model for an restaurant.""" restaurant: str food: str discount: str price: str rating: str review: str from llama_index.core.program import MultiModalLLMCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser prompt_template_str = """\ {query_str} Return the answer as a Pydantic object. The Pydantic schema is given below: """ mm_program = MultiModalLLMCompletionProgram.from_defaults( output_parser=PydanticOutputParser(Restaurant), image_documents=image_documents, prompt_template_str=prompt_template_str, multi_modal_llm=mm_model, verbose=True, ) response = mm_program(query_str="Can you summarize what is in the image?") for res in response: print(res) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1THe1qqM61lretr9N3BmINc_NWDvuthYf" -O shanghai.jpg') from pathlib import Path from llama_index.readers.file import UnstructuredReader from llama_index.core.schema import ImageDocument loader = UnstructuredReader() documents = loader.load_data(file=Path("tesla_2021_10k.htm")) image_doc = ImageDocument(image_path="./shanghai.jpg") from llama_index.core import VectorStoreIndex from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-m3") vector_index = VectorStoreIndex.from_documents( documents, embed_model=embed_model ) query_engine = vector_index.as_query_engine() from llama_index.core.prompts import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline, FnComponent query_prompt_str = """\ Please expand the initial statement using the provided context from the Tesla 10K report. {initial_statement} """ query_prompt_tmpl =
PromptTemplate(query_prompt_str)
llama_index.core.prompts.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from IPython.display import HTML, display def set_css(): display( HTML( """ <style> pre { white-space: pre-wrap; } </style> """ ) ) get_ipython().events.register("pre_run_cell", set_css) get_ipython().system('mkdir data') get_ipython().system('wget "https://www.dropbox.com/s/948jr9cfs7fgj99/UBER.zip?dl=1" -O data/UBER.zip') get_ipython().system('unzip data/UBER.zip -d data') from llama_index.readers.file import UnstructuredReader from pathlib import Path years = [2022, 2021, 2020, 2019] loader = UnstructuredReader() doc_set = {} all_docs = [] for year in years: year_docs = loader.load_data( file=Path(f"./data/UBER/UBER_{year}.html"), split_documents=False ) for d in year_docs: d.metadata = {"year": year} doc_set[year] = year_docs all_docs.extend(year_docs) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.chunk_size = 512 Settings.chunk_overlap = 64 Settings.llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray') get_ipython().system('pip install llama-index') import os import sys import logging import textwrap import warnings warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "false" from llama_index.core import ( GPTVectorStoreIndex, SimpleDirectoryReader, Document, ) from llama_index.vector_stores.docarray import DocArrayInMemoryVectorStore from IPython.display import Markdown, display import os os.environ["OPENAI_API_KEY"] = "<your openai key>" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) from llama_index.core import StorageContext vector_store = DocArrayInMemoryVectorStore() storage_context = StorageContext.from_defaults(vector_store=vector_store) index = GPTVectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", }, ), ] from llama_index.core import StorageContext vector_store = DocArrayInMemoryVectorStore() storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.readers.file import FlatReader from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter from llama_index.core.ingestion import IngestionPipeline from pathlib import Path import nest_asyncio nest_asyncio.apply() reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) pipeline = IngestionPipeline( documents=docs, transformations=[ HTMLNodeParser.from_defaults(), SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) eval_nodes = pipeline.run(documents=docs) eval_llm = OpenAI(model="gpt-3.5-turbo") dataset_generator = DatasetGenerator( eval_nodes[:100], llm=eval_llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100) len(eval_dataset.qr_pairs) eval_dataset.save_json("data/tesla10k_eval_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/tesla10k_eval_dataset.json" ) eval_qs = eval_dataset.questions qr_pairs = eval_dataset.qr_pairs ref_response_strs = [r for (_, r) in qr_pairs] from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm) evaluator_dict = { "correctness": evaluator_c, "semantic_similarity": evaluator_s, } batch_eval_runner = BatchEvalRunner( evaluator_dict, workers=2, show_progress=True ) from llama_index.core import VectorStoreIndex async def run_evals( pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref ): nodes = pipeline.run(documents=docs) vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() pred_responses = get_responses(eval_qs, query_engine, show_progress=True) eval_results = await batch_eval_runner.aevaluate_responses( eval_qs, responses=pred_responses, reference=eval_responses_ref ) return eval_results from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0) sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) sent_parser_o500 =
SentenceSplitter(chunk_size=1024, chunk_overlap=600)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm = OpenAI(model="gpt-3.5-turbo") output_parser = PydanticOutputParser(Movies) json_prompt_str = """\ Please generate related movies to {movie_name}. Output with the following JSON format: """ json_prompt_str = output_parser.format(json_prompt_str) json_prompt_tmpl = PromptTemplate(json_prompt_str) p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True) output = p.run(movie_name="Toy Story") output prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) prompt_str2 = """\ Here's some text: {text} Can you rewrite this with a summary of each movie? """ prompt_tmpl2 = PromptTemplate(prompt_str2) llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY_HERE" openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import weaviate resource_owner_config = weaviate.AuthClientPassword( username="<username>", password="<password>", ) client = weaviate.Client( "https://llama-test-ezjahb4m.weaviate.network", auth_client_secret=resource_owner_config, ) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.weaviate import WeaviateVectorStore from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name="LlamaIndex" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) resource_owner_config = weaviate.AuthClientPassword( username="<username>", password="<password>", ) client = weaviate.Client( "https://llama-test-ezjahb4m.weaviate.network", auth_client_secret=resource_owner_config, ) vector_store = WeaviateVectorStore( weaviate_client=client, index_name="LlamaIndex" ) loaded_index = VectorStoreIndex.from_vector_store(vector_store) query_engine = loaded_index.as_query_engine() response = query_engine.query("What happened at interleaf?") display(Markdown(f"<b>{response}</b>")) from llama_index.core import Document doc =
Document.example()
llama_index.core.Document.example
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.graphql.base import GraphQLToolSpec url = "https://spacex-production.up.railway.app/" headers = { "content-type": "application/json", } graphql_spec = GraphQLToolSpec(url=url, headers=headers) agent = OpenAIAgent.from_tools( graphql_spec.to_tool_list(), verbose=True, ) print(agent.chat("get the id, name and type of the Ships from the graphql endpoint")) url = "https://your-store.myshopify.com/admin/api/2023-07/graphql.json" headers = { "accept-language": "en-US,en;q=0.9", "content-type": "application/json", "X-Shopify-Access-Token": "your-admin-key", } graphql_spec =
GraphQLToolSpec(url=url, headers=headers)
llama_index.tools.graphql.base.GraphQLToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-deeplake') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio import os import getpass nest_asyncio.apply() get_ipython().system('pip install deeplake beautifulsoup4 html2text tiktoken openai llama-index python-dotenv') import requests from bs4 import BeautifulSoup from urllib.parse import urljoin def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links from langchain.document_loaders import AsyncHtmlLoader from langchain.document_transformers import Html2TextTransformer from llama_index.core import Document def load_documents(url): all_links = get_all_links(url) loader = AsyncHtmlLoader(all_links) docs = loader.load() html2text = Html2TextTransformer() docs_transformed = html2text.transform_documents(docs) docs = [
Document.from_langchain_format(doc)
llama_index.core.Document.from_langchain_format
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] llm = OpenAI(model="gpt-3.5-turbo") from llama_index.core.agent import AgentRunner from llama_index.agent.openai import OpenAIAgentWorker, OpenAIAgent agent = OpenAIAgent.from_tools(tools, llm=llm, verbose=True) agent.chat("Hi") response = agent.chat("What is (121 * 3) + 42?") response task = agent.create_task("What is (121 * 3) + 42?") step_output = agent.run_step(task.task_id) step_output step_output = agent.run_step(task.task_id) step_output = agent.run_step(task.task_id) print(step_output.is_last) response = agent.finalize_response(task.task_id) print(str(response)) llm =
OpenAI(model="gpt-4-1106-preview")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') get_ipython().system('pip install llama-index') get_ipython().system('pip install "unstructured[msg]"') import logging import sys, json logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import openai openai.api_key = os.environ["OPENAI_API_KEY"] from pydantic import BaseModel, Field from typing import List class Instrument(BaseModel): """Datamodel for ticker trading details.""" direction: str = Field(description="ticker trading - Buy, Sell, Hold etc") ticker: str = Field( description="Stock Ticker. 1-4 character code. Example: AAPL, TSLS, MSFT, VZ" ) company_name: str = Field( description="Company name corresponding to ticker" ) shares_traded: float = Field(description="Number of shares traded") percent_of_etf: float = Field(description="Percentage of ETF") class Etf(BaseModel): """ETF trading data model""" etf_ticker: str = Field( description="ETF Ticker code. Example: ARKK, FSPTX" ) trade_date: str = Field(description="Date of trading") stocks: List[Instrument] = Field( description="List of instruments or shares traded under this etf" ) class EmailData(BaseModel): """Data model for email extracted information.""" etfs: List[Etf] = Field( description="List of ETFs described in email having list of shares traded under it" ) trade_notification_date: str = Field( description="Date of trade notification" ) sender_email_id: str = Field(description="Email Id of the email sender.") email_date_time: str = Field(description="Date and time of email") from llama_index.core import download_loader from llama_index.readers.file import UnstructuredReader loader = UnstructuredReader() eml_documents = loader.load_data("../data/email/ark-trading-jan-12-2024.eml") email_content = eml_documents[0].text print("\n\n Email contents") print(email_content) msg_documents = loader.load_data("../data/email/ark-trading-jan-12-2024.msg") msg_content = msg_documents[0].text print("\n\n Outlook contents") print(msg_content) from llama_index.program.openai import OpenAIPydanticProgram from llama_index.core import ChatPromptTemplate from llama_index.core.llms import ChatMessage from llama_index.llms.openai import OpenAI prompt = ChatPromptTemplate( message_templates=[ ChatMessage( role="system", content=( "You are an expert assitant for extracting insights from email in JSON format. \n" "You extract data and returns it in JSON format, according to provided JSON schema, from given email message. \n" "REMEMBER to return extracted data only from provided email message." ), ), ChatMessage( role="user", content=( "Email Message: \n" "------\n" "{email_msg_content}\n" "------" ), ), ] ) llm =
OpenAI(model="gpt-3.5-turbo-1106")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) TABLE_NAME = os.environ["DYNAMODB_TABLE_NAME"] from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore from llama_index.storage.index_store.dynamodb import DynamoDBIndexStore from llama_index.vector_stores.dynamodb import DynamoDBVectorStore storage_context = StorageContext.from_defaults( docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME), index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME), vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage storage_context = StorageContext.from_defaults( docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME), index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME), vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME), ) summary_index = load_index_from_storage( storage_context=storage_context, index_id=list_id ) keyword_table_index = load_index_from_storage( storage_context=storage_context, index_id=keyword_id ) vector_index = load_index_from_storage( storage_context=storage_context, index_id=vector_id ) chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = chatgpt Settings.chunk_size = 1024 query_engine = summary_index.as_query_engine() list_response = query_engine.query("What is a summary of this document?") display_response(list_response) query_engine = vector_index.as_query_engine() vector_response = query_engine.query("What did the author do growing up?") display_response(vector_response) query_engine = keyword_table_index.as_query_engine() keyword_response = query_engine.query( "What did the author do after his time at YC?" )
display_response(keyword_response)
llama_index.core.response.notebook_utils.display_response
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-milvus') get_ipython().system(' pip install llama-index') import logging import sys from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.milvus import MilvusVectorStore from IPython.display import Markdown, display import textwrap import openai openai.api_key = "sk-" get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id) from llama_index.core import StorageContext vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author learn?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( [
Document(text="The number that is being searched for is ten.")
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext splitter = SentenceSplitter(chunk_size=1024) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.azure_speech.base import AzureSpeechToolSpec from llama_index.tools.azure_translate.base import AzureTranslateToolSpec speech_tool = AzureSpeechToolSpec(speech_key="your-key", region="eastus") translate_tool =
AzureTranslateToolSpec(api_key="your-key", region="eastus")
llama_index.tools.azure_translate.base.AzureTranslateToolSpec