Datasets:
ltg
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 8,887 Bytes
0fe343b
 
 
 
 
 
 
 
 
 
 
 
90af67d
0fe343b
 
 
 
 
 
 
 
 
162fd48
0fe343b
 
162fd48
0fe343b
 
162fd48
0fe343b
162fd48
 
90af67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe343b
cda69e3
 
 
 
 
 
 
 
0fe343b
 
 
 
 
 
 
 
 
 
28187f0
0fe343b
28187f0
0fe343b
28187f0
 
 
 
 
0fe343b
 
 
 
 
 
 
 
28187f0
 
 
 
 
 
 
 
5ed3124
0fe343b
 
ecd0814
0fe343b
 
ecd0814
0fe343b
 
 
 
ecd0814
0fe343b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28187f0
0fe343b
 
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
0fe343b
28187f0
 
 
 
 
 
 
 
 
0fe343b
28187f0
 
 
 
 
 
 
 
 
0fe343b
28187f0
0fe343b
28187f0
2b569e3
28187f0
0fe343b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- 'no'
- nb
- nn
license: cc-by-nc-4.0
size_categories:
- 10K<n<100K
task_categories:
- token-classification
pretty_name: NoReC TSA
dataset_info:
- config_name: default
  features:
  - name: idx
    dtype: string
  - name: tokens
    sequence: string
  - name: tsa_tags
    sequence: string
  splits:
  - name: train
    num_bytes: 2296476
    num_examples: 8634
  - name: validation
    num_bytes: 411562
    num_examples: 1531
  - name: test
    num_bytes: 346288
    num_examples: 1272
  download_size: 899078
  dataset_size: 3054326
- config_name: intensity
  features:
  - name: idx
    dtype: string
  - name: tokens
    sequence: string
  - name: tsa_tags
    sequence: string
  splits:
  - name: train
    num_bytes: 2316306
    num_examples: 8634
  - name: validation
    num_bytes: 414972
    num_examples: 1531
  - name: test
    num_bytes: 349228
    num_examples: 1272
  download_size: 902284
  dataset_size: 3080506
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: intensity
  data_files:
  - split: train
    path: intensity/train-*
  - split: validation
    path: intensity/validation-*
  - split: test
    path: intensity/test-*
---
# Dataset Card for NoReC TSA
This is a dataset for Targeted Sentiment Analysis (TSA) in Norwegian, derived from the the fine-grained annotations of N[NoReC_fine](https://github.com/ltgoslo/norec_fine). The dataset contains tokenized Norwegian sentences where each token is tagged for sentiment expressed within the sentence towards that token. 

Since a sentiment target may be the target of several sentiment expressions, these are resolved to a final sentiment polarity (and intensity) using the conversion script in [NoReC_tsa](https://github.com/ltgoslo/norec_tsa). There is no "mixed" sentiment category. When a target is the receiver of both positive and negative sentiment, the strongest wins. If a tie, the last sentiment wins. 

- **Curated by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text) at the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo
- **Funded by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) is funded by the [Research Council of Norway](https://www.forskningsradet.no/en/) (NFR grant number 270908).
- **Shared by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text) at the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo
- **License:** The data is distributed under a [Creative Commons Attribution-NonCommercial licence](https://creativecommons.org/licenses/by-nc/4.0/) (CC BY-NC 4.0). The licence is motivated by the need to block the possibility of third parties redistributing the orignal reviews for commercial purposes. Note that machine learned models, extracted lexicons, embeddings, and similar resources that are created on the basis of NoReC are not considered to contain the original data and so can be freely used also for commercial purposes despite the non-commercial condition.
- **Language:** Norwegian ("no"): Predominantly Bokmål (nb) written variant.

| variant   | split   |   sents |   docs |
|:-----|:--------|--------:|-------:|
| nb   | dev     |    1531 |     44 |
| nb   | test    |    1272 |     47 |
| nb   | train   |    8556 |    323 |
| nn   | train   |      78 |      4 |

## Dataset Sources

- **Repository:** https://github.com/ltgoslo/norec_tsa
- **Paper:** The underlying NoReC_fine dataset is described in the paper [A Fine-Grained Sentiment Dataset for Norwegian](https://aclanthology.org/2020.lrec-1.618/) by Øvrelid et al., published at LREC 2020.

## Uses
The data is intended to be used for training and testing models for TSA token classification; identifying and classifying sentiment targets in Norwegian sentences.  
Example models fine-tuned on this dataset can be found at [huggingface.co/collections/ltg/sentiment-analysis](https://huggingface.co/collections/ltg/sentiment-analysis-65c49c7247a0ffffa9897155)

## Dataset Structure
The dataset comes in two flavours:
- `default` configuration yields labels with binary Positive / Negative sentiment description
- `intensity` configuration yields labels with additional sentiment intensity, 1: Slight, 2: Standard, and 3: Strong.  

The config is required for accessing the version with intensity. `tsa_data = load_dataset("ltg/norec_tsa", "intensity")`
The dataset comes with predefined train, dev (vallidation) and test splits. 


### Data Instances
Config "default" example instance:
```
{'idx': '701363-08-02',
 'tokens': ['Vi', 'liker', 'det', '.'],
 'tsa_tags': ['O', 'O', 'B-targ-Positive', 'O']}
```
Config "intensity"  example instance:
```
{'idx': '701363-08-02',
 'tokens': ['Vi', 'liker', 'det', '.'],
 'tsa_tags': ['O', 'O', 'B-targ-Positive-2', 'O']}
```

### Data Fields
- idx(str): Unique document-and sentence identifier from [NoReC_fine](https://github.com/ltgoslo/norec_fine). The 6-digit document identifier can also be used to look up the text and its metadata in [NoReC](https://github.com/ltgoslo/norec).
- tokens: (List[str]): List of the tokens in the sentence
- tsa_tags: (List[str]): List of the tags for each token in BIO format. There is no integer representation of these in the dataset.


### Data Splits
```
DatasetDict({
    test: Dataset({
        features: ['idx', 'tokens', 'tsa_tags'],
        num_rows: 1272
    })
    train: Dataset({
        features: ['idx', 'tokens', 'tsa_tags'],
        num_rows: 8634
    })
    validation: Dataset({
        features: ['idx', 'tokens', 'tsa_tags'],
        num_rows: 1531
    })
})
```


## Dataset Creation
### Source Data

The sentiment annotations are aggregated from the NoReC_fine dataset, which in turn comprises a subset of the documents in the [Norwegian Review Corpus](https://github.com/ltgoslo/norec) (NoReC), which contains full-text professional reviews collected from major Norwegian news sources and cover a range of different domains, including literature, movies, video games, restaurants, music and theater, in addition to product reviews across a range of categories. The review articles NoReC were originally donated by the media partners in the SANT project; the Norwegian Broadcasting Corporation (NRK), Schibsted Media Group and Aller Media. The data comprises reviews extracted from eight different Norwegian news sources: Dagbladet, VG, Aftenposten, Bergens Tidende, Fædrelandsvennen, Stavanger Aftenblad, DinSide.no and P3.no. In terms of publishing date the reviews of NoReC mainly cover the time span 2003–2019, although it also includes a handful of reviews dating back as far as 1998.

### Annotators

The original annotations of NoReC_fine that the sentence-level labels here are derived from, were originally created by hired annotators who were all BSc- or MSc-level students in the Language Technology study program at the Department of informatics, University of Oslo. 

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

The data does not contain information considered personal or sensitive.

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Results obtained on this data might not generalize to texts from other domains or genres. Any biases in the sentiments expressed by the original review authors may carry over to models trained on this data.

## Citation
**BibTeX:**
```
@InProceedings{KutBarVel21,
  author = {Andrey Kutuzov and Jeremy Barnes and Erik Velldal and Lilja {\O}vrelid and Stephan Oepen}, 
  title = {Large-Scale Contextualised Language Modelling for Norwegian},
  booktitle = {{Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021)}},
  year = 2021
}

@InProceedings{OvrMaeBar20,
  author = {Lilja {\O}vrelid and Petter M{\ae}hlum and Jeremy Barnes and Erik Velldal},
  title = {A Fine-grained Sentiment Dataset for {N}orwegian},
  booktitle = {{Proceedings of the 12th Edition of the Language Resources and Evaluation Conference}},
  year = 2020,
  address = "Marseille, France, 2020"
}
```
## Dataset Card Authors

Egil Rønningstad and Erik Velldal

## Dataset Card Contact

[email protected] and [email protected]