id
stringlengths
4
8
image
imagewidth (px)
4
1.34k
latex
stringlengths
90
2.83k
CV-26906
\begin{tabular}{|l|c|c|} \hline Model & Test Accuracy & Perplexity \\ \hline Nearest Neighbor & $14.09$ & \texttt{N/A} \\ \hline CNN & $14.61$ & $0.1419$ \\ \hline Our Model & $\mathbf{19.77}$ & $\mathbf{0.2362}$ \\ \hline \end{tabular}
AI-8358
\begin{tabular}{|p{50pt}|p{50pt}<{\centering}|p{50pt}<{\centering}|p{50pt}<{\centering}|} \hline & \textbf{Types} & \textbf{HAS} & \textbf{HAS+r} \\ \hline \textbf{L.MDB} & Film & 0.38 & \textbf{0.44} \\ \hline \multirow{15}{*}{\textbf{DBpedia}} & Airl. & 0.402 & \textbf{0.424} \\ & Band & 0.26 & \textbf{0.56} \\ & Base. & 0.46 & \textbf{0.7} \\ & Lake & 0.28 & \textbf{0.4} \\ & Univ. & 0.177 & \textbf{0.406} \\ & Phil. & 0.288 & \textbf{0.667} \\ & Song & 0.538 & \textbf{0.807} \\ & Poli. & 0.209 & \textbf{0.524} \\ & TVsh. & 0.186 & \textbf{0.478} \\ & Come. & 0.528 & \textbf{0.575} \\ & Acad & \textbf{0.84} & \textbf{0.84} \\ & Acto. & 0.36 & \textbf{0.42} \\ & Book. & \textbf{0.6} & \textbf{0.6} \\ & Moun. & 0.609 & \textbf{0.645} \\ & Radi. & \textbf{0.62} & 0.532 \\ \hline \multicolumn{2}{|c|}{\textbf{Average}} & 0.421 & \textbf{0.566} \\ \hline \end{tabular}
CV-10464
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \multirow{3}*{Method} & \multicolumn{6}{c|}{IoU = 0.5} & \multicolumn{6}{c|}{IoU = 0.7} \\ \cline{2-13} ~ & \multicolumn{2}{c|}{ Easy} & \multicolumn{2}{c|}{Moderate} & \multicolumn{2}{c|}{Hard} & \multicolumn{2}{c|}{ Easy} & \multicolumn{2}{c|}{Moderate} & \multicolumn{2}{c|}{Hard} \\ \cline{2-13} ~ & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 & t/v 1 & t/v 2 \\ \hline\hline 3DOP & 46.04 & - & 34.63 & - & 30.09 & - & 6.55 & - & 5.07 & - & 4.10 & - \\ Mono3D & 25.19 & - & 18.20 & - & 15.52 & - & 2.53 & - & 2.31 & - & 2.31 & - \\ Deep3DBox & - & 27.04 & - & 20.55 & - & 15.88 & - & 5.85 & - & 4.10 & - & 3.84 \\ \hline Our Method & 28.16 & 28.98 & 21.02 & 20.71 & 19.91 & 18.59 & 5.98 & 5.45 & 5.50 & 5.11 & 4.75 & 4.45 \\ \hline \end{tabular}
SE-20655
\begin{tabular}[c]{@{}l@{}}a)DifferentorganizationsgenerateSBOMsatdifferentSDLCstages.\\b)MoreorganizationsfavorincludingmorethanbaselineSBOMinformation.\end{tabular}
CV-28515
\begin{tabular}{l|c|c|c|c} \hline Benchmark & Easy & Moderate & Hard & mAP \\ \hline Cars~(3D Detection) & 88.21 & 77.85 & 75.62 & 80.56 \\ Cars~(BEV Detection) & 90.17 & 87.55 & 87.14 & 88.29 \\ Pedestrians~(3D Detection) & 70.80 & 63.45 & 58.22 & 64.16 \\ Pedestrians~(BEV Detection) & 76.70 & 70.76 & 65.13 & 70.86 \\ Cyclists~(3D Detection) & 85.98 & 64.95 & 60.40 & 70.44 \\ Cyclists~(BEV Detection) & 87.17 & 66.71 & 63.79 & 72.56 \\ \hline \end{tabular}
AI-22172
\begin{tabular}{rl|rl|rl|rl|rl} Freq. & Word & Freq. & Word & Freq. & Word & Freq. & Word & Freq. & Word \\ \hline 3,205 & sport & 464 & use & 296 & carrying & 155 & crossing & 92 & popular \\ 1,153 & appear & 461 & chair & 287 & face & 150 & tires & 92 & planning \\ 976 & fire & 430 & parked & 283 & writing & 148 & cabinets & 88 & batters \\ 898 & pattern & 415 & coming & 230 & television & 145 & beds & 85 & enjoy \\ 845 & material & 399 & buses & 223 & vegetarian & 127 & mountain & 85 & dirt \\ 689 & bed & 395 & take & 220 & beside & 119 & levels & 85 & carpet \\ 669 & facing & 357 & utensil & 201 & graffiti & 117 & catcher & 83 & slice \\ 612 & big & 335 & dish & 167 & foot & 113 & falling & 80 & salad \\ 565 & trying & 321 & sink & 163 & couch & 101 & faces & 79 & square \\ 474 & sandwich & 317 & three & 160 & silver & 98 & fireplace & 78 & roll \\ \end{tabular}
CR-44831
\begin{tabular}{ccc} \hline Notations & Description & Time (ms) \\ \hline ${T_C}$ & Time cost of encryption & 0.096 \\ ${T_{agg}}$ & Time cost of aggregating 200 readings & 2.21 \\ ${T_{decAgg}}$ & Time cost of decrypting aggregated readings & 0.135 \\ ${T_{DM}}$ & Time cost of public key generation $DW$ & 45.36 \\ ${T_{decDW}}$ & Time cost of decrypting to obtain $\bm{rW}$ & 49.63 \\ $T{S_t}$ & Time cost of generating timestamp & 0.852 \\ ${T_{sig}}$ & Time cost of signature operation & 13.18 \\ ${T_{versig}}$ & Time cost of the verify signature operation & 127.29 \\ ${T_m}$ & Time cost of model detection & 56.03 \\ \hline \end{tabular}
SE-22997
\begin{tabular}{lllll} \hline\hline program & size(KLOC) & Times(secs) & Bug Count & False Count \\ \hline gcc & 230.4 & 213.1 & 36 & 6 \\ ammp & 13.4 & 10.4 & 23 & 5 \\ bash & 100.0 & 90.1 & 16 & 3 \\ mesa & 61.3 & 48.6 & 9 & 8 \\ cluster & 10.7 & 9.5 & 12 & 4 \\ openCV & 794.6 & 756.8 & 74 & 11 \\ bitcoin & 94.4 & 78.7 & 22 & 7 \\ Total & 1304.8 & 1257.9 & 192 & 44 \\ \hline\hline \end{tabular}
CR-29638
\begin{tabular}{ccccc} \toprule Image size & $1024\times 768$ & $1600\times 1200$ & $3240\times 2592$ & $4800\times 4800$ \\ \hline DCT on laptop GPU & 0.41 ms & 0.79 ms & 3.67 ms & 9.98 ms \\ AES on laptop CPU & 0.19 ms & 0.47 ms & 2.05 ms & 5.87 ms \\ \bottomrule \end{tabular}
AI-29454
\begin{tabular}{|p{0.30\textwidth}|p{0.275\textwidth}|p{0.28\textwidth}|} \hline \textbf{Dynamic conbditions} & \textbf{Action} & \textbf{Static Conditions} \\ \hline \makecell*[lt]{$robAt(R1)$} & \makecell*[lt]{$moveTo(R1,R0,D0)$} & \makecell*[lt]{$connected(D0,R0,R1)$} \\ \hline \makecell*[lt]{$isHeld(K,G)$} & \makecell*[lt]{$pickup(K,G,L0,R0)$} & \makecell*[lt]{$key(K)$ \\ \& $isCard(K)$} \\ \hline \makecell*[lt]{$isHeld(K,G)$} & \makecell*[lt]{$semi\_e\_isHeld(K,G)$} & \makecell*[lt]{$key(K)$ \\ \& $isCard(K)$ \\ \& $hand(G)$} \\ \hline \end{tabular}
SE-4760
\begin{tabular}{lccc} Action class & Mean LOC & Formula & P(class) \\ \hline \vspace{0.01in} {\tt <int> := <[1..20]>} & 0 & $\frac{0.20}{2}$ & 0.100 \\ {\tt <ch> := <['r','w']>} & 0 & $\frac{0.20}{2}$ & 0.100 \\ \vspace{0.03in} {\tt f(<int>)} & 30 & $\frac{30}{64} \times 0.80$ & 0.375 \\ {\tt g(<int>)} & 20 & $\frac{6+14}{64} \times 0.80$ & 0.250 \\ {\tt h(<ch>)} & 14 & $\frac{14}{64} \times 0.80$ & 0.175 \\ \end{tabular}
CR-12294
\begin{tabular}{|c|c|c|c|c|} \hline Vulnerability & Arbiter & MEM & GNG & AES \\ \hline Permissions and Privileges & & \checkmark & & \\ \hline Resource Management & & & & \checkmark \\ \hline Illegal States \& Transitions & \checkmark/\checkmark & \checkmark & & \\ \hline Buffer Issues & & \checkmark & & \\ \hline Information Leakage & \checkmark/\checkmark & & & \\ \hline Numeric Exceptions & & & \checkmark & \\ \hline Malicious Implants & & & & \checkmark \\ \hline \end{tabular}
CR-40148
\begin{tabular}{llcccccc} \hline \textbf{Label} & \textbf{Person} & \textbf{Sex} & \textbf{Language} & \textbf{Length(seconds)} & \textbf{Testing words} & \textbf{Training words} & \textbf{Overlapping words} \\ \hline \hline User$_1$ & Bill Gates & male & English & 7068 & 179 & 12593 & 19 \\ \hline User$_2$ & Feifei Li & female & English & 7120 & 182 & 17626 & 15 \\ \hline User$_3$ & Pony Ma & male & Chinese & 5180 & 215 & 28554 & 20 \\ \hline User$_4$ & Jane Goodall & female & English & 7484 & 188 & 11339 & 23 \\ \hline User$_5$ & Jiaying Ye & female & Chinese & 9032 & 188 & 11339 & 16 \\ \hline User$_6$ & Mingzhu Dong & female & Chinese & 5428 & 234 & 18709 & 22 \\ \hline User$_7$ & Steve Job & male & English & 14836 & 190 & 37751 & 17 \\ \hline User$_8$ & Yansong Bai & male & Chinese & 6792 & 251 & 27317 & 22 \\ \hline User$_9$ & Anne Hathaway & female & English & 60 & 197 & * & 21 \\ \hline User$_{10}$ & Elon Musk & male & English & 60 & 156 & * & 17 \\ \hline User$_{11}$ & Mark Zuckerberg & male & English & 60 & 177 & * & 15 \\ \hline User$_{12}$ & Oprah Winfrey & female & English & 60 & 167 & * & 18 \\ \hline User$_{13}$ & Lan Yang & female & Chinese & 60 & 289 & * & 25 \\ \hline User$_{14}$ & Minhong Yu & male & Chinese & 60 & 199 & * & 17 \\ \hline User$_{15}$ & Robin Li & male & Chinese & 60 & 244 & * & 20 \\ \hline User$_{16}$ & Yingtai Long & female & Chinese & 60 & 198 & * & 18 \\ \hline \end{tabular}
AI-6294
\begin{tabular}{|l|l|l|} \hline \multirow{2}{*}{Pretraining} & \# of Stays in Stay Level Pretraining & 100563 \\ & \# of Admissions in Admission Level Pretraining & 99000 \\ \hline \multirow{2}{*}{Stay Level Tasks} & \# of Stays in ARF Prediction & 4205 \\ & \# of Stays in Shock Prediction & 6190 \\ \hline Admission Level Tasks & \# of Admissions in Readmission Prediction & 33179 \\ \hline \multirow{4}{*}{Patient Level Tasks} & \# of Patients in Heart Failure Prediction & 12320 \\ & \# of Patients in COPD Prediction & 29256 \\ & \# of Patients in Amnesia Prediction & 11928 \\ & \# of Patients in Heart Failure Prediction (MIMIC-III) & 7522 \\ \hline \end{tabular}
AI-935
\begin{tabular}{lrrrrrr} \hline & Sum Sq & Mean Sq & NumDF & DenDF & F value & Pr($>$F) \\ \hline transparency & 0.10 & 0.10 & 1.00 & 994.00 & 5.83 & 0.0159 \\ num\_features & 0.04 & 0.04 & 1.00 & 994.00 & 2.15 & 0.1427 \\ transparency:num\_features & 0.00 & 0.00 & 1.00 & 994.00 & 0.06 & 0.8143 \\ \hline \end{tabular}
AI-27264
\begin{tabular}{l|l|l|l|l} \toprule \makecell[l]{Engage- \\ment} & \makecell[l]{Question\\difficulty} & $P_{Rresp}$ & $P_{IRresp}$ & $P_{Nresp}$ \\ \midrule \multirow{3}{*}{High} & Easy & $1$ & $0$ & $0$ \\ {} & Moderate & $1$ & $0$ & $0$ \\ {} & Difficult & $1$ & $0$ & $0$ \\ \hline \multirow{3}{*}{Medium} & Easy & $0.95$ & $0$ & $0.05$ \\ {} & Moderate & $0.92$ & $0$ & $0.08$ \\ {} & Difficult & $0.90$ & $0$ & $0.10$ \\ \hline \multirow{3}{*}{Low} & Easy & $0.90$ & $0$ & $0.10$ \\ {} & Moderate & $0.88$ & $0$ & $0.12$ \\ {} & Difficult & $0.85$ & $0$ & $0.15$ \\ \bottomrule \end{tabular}
CR-40936
\begin{tabular}{|cc|} \hline \multicolumn{2}{|c|}{A2Y} \\ \hline local & cloud \\ \hline \hline 0 & 0 \\ \hline \end{tabular}
SE-6501
\begin{tabular}{@{}p{65mm}@{}} \emph{Project: avajs/ava; Issue: $1400$} \\ ``... There is already a PR for this though, thanks to @tdeschryver ...'' \end{tabular}
CR-10565
\begin{tabular}{lrrrrrr} \multicolumn{1}{c}{Dataset} & \multicolumn{3}{c}{CIFAR-10} & \multicolumn{3}{c}{CIFAR-100} \\ \cmidrule(lr){1-1} \cmidrule(lr){2-4} \cmidrule(lr){5-7} Defense level & No Def. & Mixup+MMD & Mem-Guard & No Def. & Mixup+MMD & Mem-Guard \\ \cmidrule(lr){1-4} \cmidrule(lr){4-7} Training accuracy & 0.994 & {\bf 0.881} & 0.997 & 0.995 & {\bf 0.665} & 0.979 \\ Testing accuracy & 0.761 & {\bf 0.765} & 0.762 & 0.326 & {\bf 0.337} & {\bf 0.338} \\ \cmidrule(lr){1-4} \cmidrule(lr){4-7} \textbf{Generalization gap} & 0.232 & {\bf 0.116} & 0.235 & 0.669 & {\bf 0.328} & 0.641 \\ \textbf{Largest attack advantage} & 0.166 & {\bf 0.067} & 0.113 & 0.356 & {\bf 0.166} & 0.324 \\ \textbf{Baseline attack advantage} & 0.116 & {\bf 0.067} & 0.112 & 0.333 & {\bf 0.166} & 0.324 \\ \cmidrule(lr){1-4} \cmidrule(lr){4-7} Global-Probability attack advantage & 0.156 & {\bf 0.067} & 0.112 & 0.356 & {\bf 0.166} & 0.320 \\ Global-Loss attack advantage & 0.166 & {\bf 0.056} & 0.113 & 0.356 & {\bf 0.155} & 0.319 \\ Global-TopOne attack advantage & 0.120 & 0.049 & {\bf 0.028} & 0.249 & 0.103 & {\bf 0.093} \\ Global-TopThree attack advantage & 0.140 & 0.052 & {\bf 0.027} & 0.273 & 0.104 & {\bf 0.063} \\ Class-Vector attack advantage & 0.137 & {\bf 0.054} & 0.113 & 0.320 & {\bf 0.115} & 0.316 \\ \bottomrule \end{tabular}
PL-1297
\begin{tabular}{@{}p{7em}cccccp{6em}@{}} Unrelated & $\bigcirc$ & $\bigcirc$ & $\bigcirc$ & $\bigcirc$ & $\bigcirc$ & Related \\ \end{tabular}
AI-522
\begin{tabular}{|l|c|c|c|} \hline Variant & hit@30 & Mean Rank & Mean Percentile\tabularnewline \hline \hline Original & 0.368 & 1298.44 & 92.70\tabularnewline \hline Relation-weighted & \textbf{0.375} & \textbf{1186.81} & \textbf{93.32}\tabularnewline \hline \end{tabular}
CV-2727
\begin{tabular}{lccclll} & \multicolumn{3}{c}{Dice} & \multicolumn{3}{c}{HD95} \\ \multicolumn{1}{c}{} & enh. & whole & core & enh. & whole & core \\ \hline Isensee et al. (2017) & 70.69 & 89.51 & 82.76 & 6.24 & 6.04 & 6.95 \\ baseline & 73.43 & 89.76 & 82.17 & 4.88 & 5.86 & 7.11 \\ baseline + reg & 73.81 & 90.02 & 82.87 & 5.01 & 6.26 & 6.48 \\ baseline + reg + cotr (dec) & 75.94 & 91.33 & 85.28 & 4.29 & 4.82 & 5.05 \\ baseline + reg + cotr (dec) + post & \textbf{78.68} & 91.33 & 85.28 & 3.49 & \textbf{4.82} & \textbf{5.05} \\ baseline + reg + cotr (dec) + post + DC\&CE & 78.62 & \textbf{91.75} & \textbf{85.69} & \textbf{2.84} & 4.88 & 5.11 \\ baseline + reg + cotr (inst) + post + DC\&CE & 76.32 & 90.35 & 84.36 & 3.74 & 5.64 & 5.98 \\ baseline + reg + post + DC\&CE & 76.78 & 90.30 & 83.55 & 3.66 & 5.36 & 6.03 \end{tabular}
CR-36686
\begin{tabular}{ccccc} \toprule \textbf{} & \textbf{Time(s)} & \textbf{Space(KB)} & \textbf{$T_{total}\Delta$Acc} & \textbf{$T_{total}\Delta$Loss} \\ \midrule $^v$BN & \cellcolor[HTML]{67000d}\color{white}263.5 & \cellcolor[HTML]{fff5f0}4 & \cellcolor[HTML]{f7f6f6} -0.53 & \cellcolor[HTML]{f7f5f4} 0.02 \\ $^v$ME & \cellcolor[HTML]{fff5f0}90.2 & \cellcolor[HTML]{fdccb8}12 & \cellcolor[HTML]{f8f4f2} -1.64 & \cellcolor[HTML]{f8f1ed} 0.08 \\ $^v$BF & \cellcolor[HTML]{fcab8f}142.1 & \cellcolor[HTML]{67000d}\color{white}1233 & \cellcolor[HTML]{f8f4f2} -1.54 & \cellcolor[HTML]{f8f2ef} 0.06 \\ \textbf{$^v$EM} & \cellcolor[HTML]{ffece3}99.6 & \cellcolor[HTML]{fff5f0}4 & \cellcolor[HTML]{f8f2ef} -2.82 & \cellcolor[HTML]{fee8dd} 0.15 \\ \textbf{$^v$FM} & \cellcolor[HTML]{fbfaf9}10.26 & \cellcolor[HTML]{fff5f0}4 & \cellcolor[HTML]{f8f2ef} -2.73 & \cellcolor[HTML]{fee8dd} 0.13 \\ \bottomrule \end{tabular}
AI-39429
\begin{tabular}{ccc} \toprule \multicolumn{1}{c}{\multirow{1}[1]{*}{\textbf{Shorthand}}} & \multirow{1}[1]{*}{$\mathcal{T}_\text{train}$} & \multicolumn{1}{c}{\multirow{1}[1]{*}{$\mathcal{T}_\text{test}$}} \\ \midrule \textit{random} & $100$ random & $20$ random \\ \textit{non-cls} & $35$ non-cls. & $42$ non-cls.($\mathcal{T}_\text{test}^\text{in}$) / $43$ cls.($\mathcal{T}_\text{test}^\text{out}$) \\ \textit{cls} & $35$ cls. & $8$ cls.($\mathcal{T}_\text{test}^\text{in}$) / $77$ non-cls.($\mathcal{T}_\text{test}^\text{out}$) \\ \bottomrule \end{tabular}
AI-24546
\begin{tabular}{l|c|c|c} \hline & $P_1$ & $P_2$ & $P_3$ \\ \hline Accuracy & 99.6 & 99.6 & 100 \\ \hline \end{tabular}
CR-46597
\begin{tabular}{|c|c|c|c|c|c|} \hline & ANN & SVM & NBC & Random Forest & Average \\ \hline Precision & 0.9985 & 0.9833 & 0.9937 & \textbf{0.9987} & 0.9936 \\ \hline Recall & 0.9112 & \textbf{0.9339} & 0.8537 & 0.9084 & 0.9018 \\ \hline F1-Score & 0.9529 & \textbf{0.9579} & 0.9185 & 0.9514 & 0.9452 \\ \hline \end{tabular}
SE-25170
\begin{tabular}[l]{@{}l@{}}\textit{``Promotingwomentoseniorjobsandleadershipwouldhelpyoungertalentstoidentify}\\\textit{themselveswiththecompany,givingthemconfidenceandmoreprospectsofcontinuingtheir}\\\textit{careerinthecompany"}(S65) \end{tabular}
PL-1837
\begin{tabular}{lr} \toprule \textbf{Category} & \textbf{\#Apps Studied} \\ \midrule Banking & 6 \\ Business & 10 \\ Education & 8 \\ Entertainment & 16 \\ Health & 10 \\ Online Payments & 25 \\ Music & 13 \\ News & 19 \\ Shopping & 17 \\ Social & 11 \\ Top Grossing & 30 \\ Top Apps & 22 \\ Travel & 9 \\ \midrule Total & 196 \\ \bottomrule \end{tabular}
SE-23461
\begin{tabular}{lcccccccccc} & KNN & LNR & SVR & RFT & CART & RDCART & GSCART & FLASH & DECART & ASKL \\ commit & \cellcolor[HTML]{F0F0F0}160\ contributor & \cellcolor[HTML]{EFEFEF}102\ openPR & \cellcolor[HTML]{F0F0F0}151\ closePR & \cellcolor[HTML]{EFEFEF}100\ openISSUE & \cellcolor[HTML]{F0F0F0}150\ closedISSUE & \cellcolor[HTML]{EFEFEF}147\ \end{tabular}
CR-21878
\begin{tabular}{rcl} \hline $U_{i}$ & & $S$ \\ \hline Chooses $b$ as random number and inputs $ID_{i}$, $PW_{i}$ \& $b$ & & \\ Computes $PWB_{i}=h(PW_{i}\oplus b)$ & $\xrightarrow{PWB_{i}, ID_{i}}$ & Computes \\ & & $Q_{i}=h(ID_{i}\Vert x)\oplus PWB_{i}$ \\ & & $R_{i}=h(PWB_{i}\Vert ID_{i})$ \\ Stores random number $b$ on smart card and smart & & Stores ($Q_{i}$,$R_{i}$ \& $Q_{i}\oplus PWB_{i}$) in $DBS$ \\ card contains [$R_{i}$, $Q_{i}$ \& $b$] & $\xleftarrow{[R_{i}, Q_{i}]}$ & Issues a smart card containing [$R_{i}$, $Q_{i}$] \\ \hline \end{tabular}
CV-2811
\begin{tabular}{|l||r|r|r||r|} \hline {} & {\em ss} & {\em gs} & {\em noa} & Total \\ \hline\hline Training & $648$ & $2\rm{,}002$ & $7\rm{,}000$ & $ 9\rm{,}650$ \\ \hline Testing & $237$ & $618$ & $2\rm{,}828$ & $ 3\rm{,}683$ \\ \hline\hline Total & $885$ & $2\rm{,}620$ & $9\rm{,}828$ & $13\rm{,}333$ \\ \hline \end{tabular}
CV-24619
\begin{tabular}{|l|c|} \hline Method & Accuracy \\ \hline\hline Chance & 0.1 \\ Analogous Attr & 1.4 \\ Red wine & 13.1 \\ Attribute as Operator & 14.2 \\ VisProd NN & 13.9 \\ Label Embedded+ & 14.8 \\ Our & \textbf{15.2} \\ \hline \end{tabular}
CR-43677
\begin{tabular}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{\textbf{Sample of Secret Set}} & \multicolumn{2}{|c|}{\textbf{Sample of Camouflaged Training Set}} \\\hline \multicolumn{1}{|c|}{\textbf{Class}} & \multicolumn{1}{|c|}{\textbf{Article}} & \multicolumn{1}{|c|}{\textbf{Class}} & \multicolumn{1}{|c|}{\textbf{Article}} \\\hline Christianity & $\ldots$Christ that often causes christians to be very & Baseball & $\ldots$The Angels won their home opener against the \\ & critical of themselves and other christinas. We$\ldots$ & & Brewers today before 33,000+ at Anaheim Stadium$\ldots$ \\\cline{2-2}\cline{4-4} & $\ldots$I've heard it said that the accounts we have & & $\ldots$ interested in finding out how I might be able \\ & of Christs life and ministry in the Gospels were$\ldots$ & & to get two tickets for the All Star game in Baltimore$\ldots$ \\\hline Atheism & $\ldots$This article attempts to provide a general & Hockey & $\ldots$ user and not necessarily those could anyone post \\ & introduction to atheism. Whilst I have tried to be$\ldots$ & & the game summary for the Sabres-Bruins game.$\ldots$ \\\cline{2-2}\cline{4-4} & $\ldots$Science is wonderful at answering most of our & & $\ldots$Tuesday, and the isles/caps game is going into \\ & questions. I'm not the type to question scientific$\ldots$ & & overtime. what does ESPN do. Tom Mees says, "we$\ldots$ \\\hline \end{tabular}
CV-332
\begin{tabular}{|c|c|cc|} \hline & & Surface & Joint \\ Output & Method & Error & Error \\ \hline \multirow{3}{*}{P} & Tung \textit{et al.} & 74.5 & 64.4 \\ & Pavlakos \textit{et al.} & 151.5 & - \\ & SMPLR & 75.4 & 55.8 \\ \hline V & BodyNet & 65.8 & - \\ \hline \multirow{2}{*}{S} & Baseline & 101 & 85.7 \\ & HMNet[subsampled] & 86.9 & 72.4 \\ & HMNet & 86.6 & 71.9 \\ & HMNetOracle & \textbf{63.5} & \textbf{49.1} \\ \hline \end{tabular}
AI-24907
\begin{tabular}{c|ccc} & \multicolumn{2}{c}{Evaluation Level} \\ Game & 1 & 3 \\ \hline Clusters & 0.00 $\pm$ 0.00 & 0.7 $\pm$ 0.46 \\ Cook Me Pasta & 4.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ Bait & -0.09 $\pm$ 0.29 & 1.78 $\pm$ 0.42 \\ Sokoban 2 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ Zen Puzzle & 23.00 $\pm$ 0.00 & 10.9 $\pm$ 5.01 \\ Labyrinth & 0.00 $\pm$ 0.00 & \textbf{1.00} $\pm$ 0.00 \\ \end{tabular}
CV-19981
\begin{tabular}{c|c|c} \hline & w/o & w/ \\ & noise module & noise module \\ \hline\hline DSQ & 84.11 & \textbf{84.46} \\ BNN+ & 84.59 & \textbf{84.87} \\ FDA-BNN & 85.83 & \textbf{86.20} \\ \hline \end{tabular}
CR-12610
\begin{tabular}{|c|c|c|c|c|} \hline solution & abbreviation & sparsification & perturbation & budget \\ \hline non-private & NP & full/random/topk & - & $\infty$ \\ \hline flat & PM/HM/Duchi & random sampling & $\epsilon^{\prime}$ & $\epsilon^{\prime}$ \\ \hline compressed & -RP & random projection & $\epsilon^{\prime}$ & $\epsilon^{\prime}$ \\ \hline two-stage & EXP/PE/PS- & $\epsilon_1=\mu \cdot \epsilon^{\prime}$ & $\epsilon_2=\epsilon^{\prime}-\epsilon_1$ & $\epsilon^{\prime}$ \\ \hline \end{tabular}
AI-16366
\begin{tabular}{|l|l|l|l|l|} \hline \textbf{Algorithm} & \textbf{F1 Score} & \textbf{Precision} & \textbf{Recall} & \textbf{AUC} \\ \hline \textit{RECON} & 0.61 & 0.56 & 0.68 & 0.51 \\ \hline \textit{ImRec} & 0.71 & 0.60 & 0.88 & 0.65 \\ \hline \textit{TIRR} & 0.87 & 0.86 & 0.88 & 0.91 \\ \hline \end{tabular}
AI-19935
\begin{tabular}{ll} \hline \hline \textbf{dialogue His.} & what is your favorite food ? [SEP] ice cream . \\ \textbf{Gold Resp.} & what flavor ? \\ \hline TA-Seq2Seq & what kind of ice cream ? \\ THRED & what kind of ice cream ? \\ C-Trans-ED & ice cream is the best food i have ever eaten \\ C-Trans-Dec & i 'm not sure if you 're joking but i 'm not sure if you 're serious . \\ BERT & i do n't like ice cream . \\ Ours & i do n't like ice cream . it 's coarse and irritating and it gets everywhere . \\ \quad Two-Step FT & i 've never had ice cream . what 's it like ? \\ \quad w/o ctext & i 've never had ice cream . what 's it taste like ? \\ \quad w/o tfidf & what kind of ice cream do you like ? \\ \hline \hline C-Trans-ED & ice cream is the best food i 've ever seem . \\ C-Trans-Dec & i 've never had ice cream . \\ BERT & i 've never had ice cream . \\ Ours & i do n ' t like ice cream . \\ \quad Two-Step FT & i like ice cream , but i do n ' t like it . \\ \quad w/o ctext & i 've never had ice cream , but it 's so good . \\ \quad w/o tfidf & i ' ve never had ice cream . \\ \hline \end{tabular}
SE-9694
\begin{tabular}{lll} \hline Paper & Context & Type of study \\ \hline Abdullah et al. & Compliance management & Case study \\ Conmy and Paige & Safety standards (avionics) & Educated opinion \\ Boella et al. & Business processes & Educated opinion \\ Ghanavati et al. & Business processes & Experience \\ Nekvi and Madhavji & Railway regulations & Case study \\ \hline \end{tabular}
CV-3840
\begin{tabular}{c|cccc|cccc|cccc|cccc} Model & \multicolumn{4}{c|}{OMP Models} & \multicolumn{4}{c}{25 mm} & \multicolumn{4}{c}{50 mm} & \multicolumn{4}{c}{ 100 mm} \\ \hline ZV & 42 & 100 & 149 & 188 & 53 & 106 & 154 & 191 & \textbf{66} & 118 & 164 & 199 & 106 & 151 & 187 & 223 \\ RNN & 41 & 93 & 135 & 169 & 52 & 99 & 141 & 174 & 69 & 113 & 151 & 183 & \textbf{105} & 142 & 181 & 208 \\ C-RNN+OMP+LI & \textbf{40} & \textbf{81} & \textbf{109} & \textbf{129} & \textbf{51} & \textbf{88} & \textbf{115} & \textbf{134} & 67 & \textbf{100} & \textbf{126} & \textbf{144} & 106 & \textbf{132} & \textbf{156} & \textbf{172} \\ \hline \end{tabular}
CR-30622
\begin{tabular}{c|c|c|c|c} \hline & $\delta$-reweight & $\gamma$-reweight & Soft($\delta=1.0$) & Soft($\delta=2.0$) \\ \midrule[0.1pt] $\epsilon=0.0$ & $0.9997 \pm 0.0005$ & $0.9936 \pm 0.0016$ & $0.8446 \pm 0.0069$ & $0.9705 \pm 0.0030$ \\ $\epsilon=0.1$ & $0.9569 \pm 0.0021$ & $0.9297 \pm 0.0030$ & $0.7871 \pm 0.0081$ & $0.9239 \pm 0.0070$ \\ $\epsilon=0.2$ & $0.8881 \pm 0.0043$ & $0.8391 \pm 0.0018$ & $0.7339 \pm 0.0110$ & $0.8680 \pm 0.0088$ \\ $\epsilon=0.3$ & $0.8152 \pm 0.0059$ & $0.7574 \pm 0.0054$ & $0.6741 \pm 0.0119$ & $0.7956 \pm 0.0110$ \\ $\epsilon=0.4$ & $0.7487 \pm 0.0056$ & $0.6942 \pm 0.0107$ & $0.6334 \pm 0.0084$ & $0.7312 \pm 0.0121$ \\ $\epsilon=0.5$ & $0.6851 \pm 0.0067$ & $0.6502 \pm 0.0068$ & $0.5859 \pm 0.0079$ & $0.6561 \pm 0.0124$ \\ \hline \end{tabular}
SE-15205
\begin{tabular}{lrrl} \hline {\bfseries Method} & {\bfseries Mean Recall} & {\bfseries Dunn's test Rank} & {\bfseries Comments} \\ \hline \hline Proportion Moving Window & 0.84 & 1 & \\ Proportion Cold Start & 0.82 & 1 & \\ Proportion Increment & 0.81 & 1.5 & Significantly lower than Proportion Moving Window \\ SZZ\_B+ & 0.71 & 2 & \\ SZZ\_B & 0.71 & 2 & \\ SZZ\_RA & 0.70 & 2 & \\ SZZ\_U & 0.70 & 2 & \\ SZZ\_RA+ & 0.70 & 2 & \\ SZZ\_U+ & 0.70 & 2 & \\ Simple & 0.61 & 3 & \\ \hline \hline \end{tabular}
CR-55836
\begin{tabular}[c]{@{}l@{}}1.Thestrategybasedonknowledgeextractionwasusedtoovercome\\thecommunicationbottleneckinFL.\\2.Thearticleproducedsatisfactoryresultsonthreedifferent\\medicaldatasets.\end{tabular}
CR-21138
\begin{tabular}{|l|r|} \cline{2-2} \multicolumn{1}{c|}{\ } & Mean ($\pm$ Std) \\ \hline \hline Capacity per Token & 4.41 ($\pm$ 0.78) \\ \hline Encoded Expansion & 8.13 ($\pm$ 2.12) \\ \hline Plaintext Bits per Covertext Bits & 0.11 ($\pm$ 0.02) \\ \hline Median Sender-side Time & 5.21 \\ \hline Sentinel Value Check Time & 0.13 ($\pm$ 0.15) \\ \hline Median Receiver-side Time & 5.15 \\ \hline \addlinespace[0.2cm] \hline Tokenizer Decoding & 6.99 ($\pm$ 4.68) \\ \hline Backtracking Rate Overall & 0.125 \\ \hline Path Decoding Rate $N=5$ & 0.961 \\ \hline Path Decoding Time $N=5$ & 54.75. ($\pm$ 21.15) \\ \hline Path Decoding Rate $N=10$ & 0.986 \\ \hline Path Decoding Time $N=10$ & 142.18. ($\pm$ 14.07) \\ \hline Path Decoding Rate $N=40$ & 1 \\ \hline Path Decoding Time $N=40$ & 496.32 ($\pm$ 51.44) \\ \hline Overall Mean Receiver-side Time & 20.60 ($\pm$ 57.58) \\ \hline Receiver-side Failure Rate & 0.00 \\ \hline \end{tabular}
AI-18467
\begin{tabular}{|c|c|c|c|} \hline \textbf{Algorithm} & \textbf{Rounds} & \textbf{MNIST} & \textbf{CIFAR-10} \\ \hline Genetic CFL & 10 & 97.99 & 76.88 \\ \hline Byzantine Robustness of CFL & 200 & 97.4 & 75.3 \\ \hline FedZip & 20 & 98.03 & - \\ \hline Iterative federated clustering & - & 95.25 & 81.51 \\ \hline \end{tabular}
CL-885
\begin{tabular}{lcccc} \hline Features & Category & $P$ & $R$ & $F1$ \\ \hline \multirow {2} {*} {all} & $I$ & 66.93 & \textbf{77.32} & \textbf{71.75} \\ & $NI$ & \textbf{73.13} & 61.78 & \textbf{66.97} \\ \hline \multirow {2} {*} {- tropes} & $I$ & \textbf{67.70} & {48.00} & 56.18 \\ & $NI$ & {59.70} & \textbf{77.09} & \textbf{67.29} \\ \hline \multirow {2} {*} {- MS} & $I$ & 63.59 & \textbf{78.09} & 70.10 \\ & $NI$ & \textbf{71.59} & {55.27} & 62.38 \\ \hline \multirow {2} {*} {- typography} & $I$ & 57.30 & 77.95 & 66.05 \\ & $NI$ & 65.49 & 41.86 & 51.07 \\ \hline \end{tabular}
AI-22501
\begin{tabular}{|c|c|c|c|c|} \hline \textbf{Contr.} & \textbf{Domain} & \textbf{Application} & \textbf{Focus} & \textbf{Value} (main) \\ \hline \hline & Business & Decision Support System & Conceptual & Interoperability \\ & N\textbackslash A & N\textbackslash A & Conceptual & Interoperability \\ & N\textbackslash A & N\textbackslash A & Conceptual & Interoperability \\ & Healthcare & Explainable models & Conceptual & Explainability \\ & N\textbackslash A & Explainable models & Conceptual & Explainability \\ & Education & System Thinking & Conceptual & System Engineering \\ & Smart Systems & Ambient Assisting Living & Conceptual & System Engineering \\ & N\textbackslash A & N\textbackslash A & Conceptual & Explainability \\ & N\textbackslash A & Collective Intelligence & Conceptual & Quality and Accuracy \\ & N\textbackslash A & Knowledge Graph & Conceptual & Explainability \\ & N\textbackslash A & Collective Intelligence & Conceptual & Quality and Accuracy \\ & N\textbackslash A & N\textbackslash A & Conceptual & Quality and Accuracy \\ & N\textbackslash A & N\textbackslash A & Conceptual & System Engineering \\ & N\textbackslash A & N\textbackslash A & Conceptual & System Engineering \\ \hline \hline \end{tabular}
SE-23702
\begin{tabular}{ccrrrc} \toprule & sub- & fail-only & pass-only & fail \& & failure \\ signature & pattern & events & events & pass & strings* \\ \midrule A & 1 & 1 & 0 & 0 & yes \\ A & 2 & 2 & 0 & 0 & no \\ B & 1 & 2 & 0 & 0 & yes \\ C & 1 & 21 & 0 & 0 & yes \\ C & 2 & 21 & 0 & 0 & yes \\ D & 1 & 4 & 0 & 0 & yes \\ \textbf{D$^{\#}$} & \textbf{2} & 69 & 267 & 115 & no \\ \textbf{D$^{\#}$} & \textbf{3} & 2 & 10 & 13 & no \\ \textbf{E$^{\#}$} & \textbf{1} & 24 & 239 & 171 & no \\ E & 1 & 1 & 0 & 0 & no \\ E & 2 & 9 & 0 & 0 & no \\ E & 3 & 9 & 0 & 0 & yes \\ E & 4 & 23 & 0 & 0 & yes \\ F & 1 & 19 & 0 & 0 & yes \\ F & 2 & 19 & 0 & 0 & no \\ F & 3 & 19 & 0 & 0 & yes \\ F & 4 & 14 & 0 & 0 & yes \\ G & 1 & 2 & 0 & 0 & yes \\ G & 2 & 1 & 0 & 0 & no \\ G & 3 & 1 & 0 & 0 & no \\ \bottomrule \multicolumn{6}{l}{* signature contains the lexical patterns 'error', 'fault' or 'fail*'} \\ \multicolumn{6}{l}{$^{\#}$ sub-patterns that were removed to ensure a clean ground truth} \end{tabular}
AI-1767
\begin{tabular}{lrrrrrr} \toprule \multirow{2}*{Methods} & \multicolumn{3}{c}{CNNDM} & \multicolumn{3}{c}{XSum} \\ \cmidrule(r{4pt}){2-4} \cmidrule{5-7} ~ & IF & RL & FL & IF & RL & FL \\ \midrule PSP & {\bf 0.500} & {\bf 0.708} & {\bf 0.667} & {\bf 0.217} & {\bf 0.275} & {\bf 0.492} \\ Prompt Tuning & -0.317 & -0.758 & -0.975 & -0.336 & -0.400 & -0.867 \\ Prefix-Tuning & -0.233 & 0.067 & 0.158 & 0.017 & -0.008 & 0.292 \\ Full-Model Tuning & 0.067 & -0.025 & 0.075 & 0.117 & 0.092 & 0.075 \\ \bottomrule \end{tabular}
CV-28731
\begin{tabular}{@{\hspace{1mm}}c@{\hspace{9mm}}c@{\hspace{15mm}}c@{\hspace{16mm}}c@{\hspace{13mm}}c@{\hspace{13mm}}c} (a) ground-truth & (b) RPM-HTB & (c) Go-ICP & (d) FRS & (e) TEASER++ & (f) GORE \end{tabular}
CR-28559
\begin{tabular}{lc} \hline \textbf{Command} & \textbf{Output} \\ \hline \verb|{\c c}| & {\c c} \\ \verb|{\u g}| & {\u g} \\ \verb|{\l}| & {\l} \\ \verb|{\~n}| & {\~n} \\ \verb|{\H o}| & {\H o} \\ \verb|{\v r}| & {\v r} \\ \verb|{\ss}| & {\ss} \\ \hline \end{tabular}
CV-409
\begin{tabular}{lccccccc} \toprule $D$ & 2 & 8 & 16 & 32 & 64 & 128 & 256 \\ \midrule Scenes-daytime & 85 & 87 & \textbf{91} & 92 & 92 & 95 & 95 \\ \midrule Handbags-color & 96.3 & \textbf{99.1} & 99.0 & 99.3 & 98.3 & 98.9 & 98.4 \\ Handbags-texture & 64.2 & 65.2 & 66.4 & \textbf{87.0} & 91.3 & 92.8 & 95.4 \\ \bottomrule \end{tabular}
AI-19315
\begin{tabular}{|l|l|} \hline $P(x|z_1)$ & 0.1 \\ \hline $P(x|z_2)$ & 0.4 \\ \hline $P(x|z_3)$ & 0.5 \\ \hline $P(x|z_4)$ & 0.7 \\ \hline \end{tabular}
CR-56856
\begin{tabular}{|c|c|c|c|c|} \hline Candidate Models & DNN1 & DNN2 & DNN3 & VGG-16 \\ \hline Accuracy & 79.63\ \end{tabular}
CV-27536
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|} \hline \multicolumn{2}{|c|}{Branches} & \multicolumn{4}{c|}{Regular Text} & \multicolumn{4}{c|}{Irregular Text} \\ \hline Attn & CTC & IIIT5K & SVT & IC03 & IC13 & IC15-2077 & IC15-1811 & SVTP & CUTE \\ \hline & \checkmark & 88.6 & 87.3 & 92.4 & 90.3 & 72.1 & 76.5 & 77.1 & 78.8 \\ \hline \checkmark & & \textbf{91.0} & 90.6 & 94.3 & 93.3 & \textbf{75.7} & 80.2 & \textbf{84.2} & 82.3 \\ \hline \checkmark & \checkmark & \textbf{91.0} & \textbf{91.2} & \textbf{96.1} & \textbf{94.5} & 75.1 & \textbf{80.4} & 83.3 & \textbf{83.7} \\ \hline \end{tabular}
SE-4747
\begin{tabular}{|lc|c|c|c|c|c|c|c|} \hline \multicolumn{1}{|l|}{\textbf{Distance}} & \textbf{Total} & \textbf{TP} & \textbf{FP} & \textbf{FN} & \textbf{P} & \textbf{R} & \textbf{F1} & \textbf{[email protected]} \\ \hline \multicolumn{1}{|l|}{All} & 139,526 & 134,948 & 711 & 191 & 0.9948 & 0.9986 & 0.9967 & 0.9942 \\ \hline \multicolumn{2}{|c|}{+OOD} & 134,927 & 20 & 212 & 0.9999 & 0.9984 & 0.9991 & 0.995 \\ \hline \hline \multicolumn{1}{|l|}{$\le$ 80 m} & 105,588 & 101,320 & 444 & 173 & 0.9956 & 0.9983 & 0.997 & 0.9948 \\ \hline \multicolumn{2}{|c|}{+OOD} & 101,300 & 13 & 193 & 0.9999 & 0.9981 & 0.999 & 0.995 \\ \hline \hline \multicolumn{1}{|l|}{$\le$ 50 m} & 61,845 & 57,877 & 186 & 173 & 0.9968 & 0.9970 & 0.9969 & 0.9944 \\ \hline \multicolumn{2}{|c|}{+OOD} & 57,857 & 13 & 193 & 0.9998 & 0.9967 & 0.9982 & 0.995 \\ \hline \end{tabular}
AI-33039
\begin{tabular}{@{~}lll} \toprule \textbf{Notation} & \textbf{Desription} \\ \midrule $\bm{\mathcal{G}}$ & a directed graph \\ $\bm{\mathcal{V}} $ & set of nodes \\ $\bm{\mathcal{E}} $ & set of edges \\ $\bm{\mathcal{S}}$ & set of multiple-paths \\ $\bm{\mathcal{T}}$ & set of single-paths \\ $N$ & number of nodes \\ $E$ & number of edges \\ $K$ & embedding dimension of nodes and relationships \\ $\mathbf{A} \in \mathcal{R}^{N \times N}$ & adjacency matrix of nodes \\ $\mathbf{\Phi}^{\mathcal{V} } \in \mathcal{R}^{N \times K}$ & embedding matrix for all nodes \\ $\mathbf{Z}^{\mathcal{E} } \in \mathcal{R}^{E \times K}$ & embedding matrix for all relationships of node-pairs \\ \bottomrule \end{tabular}
AI-30452
\begin{tabular}{lccccc} \toprule Symbol & $a_1$ & $a_2$ & $a_3$ & $a_4$ & $a_5$ \\ \midrule Probability & $0.32$ & $0.08$ & $0.16$ & $0.02$ & $0.42$ \\ $\ell_{a_i}$ & $32$ & $8$ & $16$ & $2$ & $42$ \\ $b_{a_i}$ & $0$ & $32$ & $40$ & $56$ & $58$ \\ \bottomrule \end{tabular}
CR-48768
\begin{tabular}{l|l|c} \toprule[1.5pt] \multicolumn{2}{l|}{Violated Rules} & \# of Apps\tabularnewline \midrule[1pt] \multicolumn{2}{l|}{Rule 1} & 41 \tabularnewline \hline \multirow{4}{*}{Rule 2} & Rule 2-1 & 162\tabularnewline \cline{2-3} & Rule 2-2 & 67\tabularnewline \cline{2-3} & Rule 2-3 & 125\tabularnewline \cline{2-3} & Total & 354 \tabularnewline \hline \multicolumn{2}{l|}{Rule 3} & 4\tabularnewline \hline \multicolumn{2}{l|}{Total} & 399 (out of 2,022) \tabularnewline \bottomrule[1.5pt] \end{tabular}
PL-303
\begin{tabular}{l|r|r|r|r|r} \toprule Service type & \thead{\# Positive \\ responses} & \thead{\# Negative\\ responses} & \thead{\# Total\\ responses} & \thead{\# No\\ responses} & \thead{\# Total\\ PRs}\\ \midrule Nudge-LT & 1829 & 2062 & 3891 & 226 & 4117 \\ Nudge-FULL & 3199 & 882 & 4081 & 302 & 4383 \\ \bottomrule \end{tabular}
CL-2692
\begin{tabular}{lcccc} \toprule & \multicolumn{2}{c}{Train (sec.)} & \multicolumn{2}{c}{Test (sec.)} \\ Model & Turn & Total & Turn & Total \\ \toprule \small GLAD & 1.78 & 89 & 2.32 & 76 \\ \small GCE (Ours) & \textbf{1.16} & \textbf{60} & \textbf{1.92} & \textbf{63} \\ \bottomrule \end{tabular}
SE-23563
\begin{tabular}{p{5cm}|p{2cm}} \hline \textbf{Survey item} & \textbf{Average score} \\ \hline My understanding of real world problems related to project management was promoted. & 1.4 \\ \hline My interest on the course objectives and content was aroused. & 1.9 \\ \hline The importance of the material for my professional activity became clear to me. & 1.5 \\ \hline Overall, I rate the didactic method (eduScrum) positively. & 1.6 \\ \hline \end{tabular}
CV-8215
\begin{tabular}{||c|c|c|c||} \hline Method & PSNR & SSIM & CPBD \\ [0.5ex] \hline\hline $L_{pix}$ & 25.874 & 0.813 & 0.366 \\ $L_{pix}+L_{adv}$ & 25.951 & 0.814 & 0.373 \\ $L_{pix}+L_{adv}+L_{reg}$ & \textbf{26.153} & \textbf{0.818} & \textbf{0.386} \\ \hline \end{tabular}
SE-4363
\begin{tabular}{lrrrrrrrr} \toprule \multirow{2}{*}{Models} & \multicolumn{4}{c}{Accuracy} & \multicolumn{4}{c}{MRR} \\ \cmidrule(lr){2-5} \cmidrule(lr){6-9} & k = 1 & k=3 & k=5 & k=7 & k = 1 & k=3 & k=5 & k=7 \\ \hline (1) No words or files & 0.02 & 0.08 & 0.13 & 0.16 & 0.01 & 0.04 & 0.05 & 0.06 \\ (2) Words only & 0.21 & 0.30 & 0.32 & 0.34 & 0.21 & 0.25 & 0.26 & 0.32 \\ (3) Files only & 0.29 & 0.69 & 0.73 & 0.76 & 0.29 & 0.48 & 0.49 & 0.50 \\ (4) Words + Files & \textbf{0.49} & \textbf{0.73} & \textbf{0.77} & \textbf{0.80} & \textbf{0.49} & \textbf{0.61} & \textbf{0.68} & \textbf{0.72} \\ \bottomrule \end{tabular}
CV-5301
\begin{tabular}{|l|c|c|c|c|c|c|c|} \hline \textbf{Model} & \textbf{\# Par. Subnets} & \textbf{48 cores} & \textbf{2 GPUs} & \textbf{4 GPUs} & \textbf{8 GPUs} \\ \hline \multicolumn{6}{|c|}{\textbf{without multi-rate clocks}} \\ \hline sequential & 1 & $6.0~(1.0\times)$ & $18.6~(1.0\times)$ & $18.0~(1.0\times)$ & $18.1~(1.0\times)$ \\ \hline semi-parallel & 5 & $7.9~(1.3\times)$ & $33.8~(1.8\times)$ & $48.7~(2.7\times)$ & $49.2~(2.7\times)$ \\ \hline parallel & 10 & $7.8~(1.3\times)$ & $33.2~(1.8\times)$ & $46.4~(2.6\times)$ & $48.1~(2.6\times)$ \\ \hline \multicolumn{6}{|c|}{\textbf{with multi-rate clocks}} \\ \hline sequential & 1 & $14.3~(2.4\times)$ & $48.2~(2.6\times)$ & $47.1~(2.6\times)$ & $47.1~(2.6\times)$ \\ \hline semi-parallel & 5 & $18.1~(3.0\times)$ & $63.9~(3.4\times)$ & $90.9~(5.0\times)$ & $90.3~(5.0\times)$ \\ \hline parallel & 10 & $18.1~(3.0\times)$ & $63.7~(3.4\times)$ & $88.6~(4.9\times)$ & $90.7~(5.0\times)$ \\ \hline \end{tabular}
CR-11747
\begin{tabular}{llrrr} \toprule Application & Description & Version & LOC & Files \\ \midrule Nodegoat & Educational & 1.3.0 & 970\,450 & 12\,180 \\ Keystone & CMS & 4.0.0 & 1\,393\,144 & 13\,891 \\ Apostrophe & CMS & 2.0.0 & 774\,203 & 5\,701 \\ Juice-shop & Educational & 8.3.0 & 725\,101 & 7\,449 \\ Mongo-express & DB manager & 0.51.0 & 646\,403 & 7\,378 \\ \bottomrule \end{tabular}
CV-29652
\begin{tabular}{|l|l|l|} \hline Index & Layer Description & Output \\ \hline 1 & Warp($I_R$,$\mathbf{d_L^3}$) - $I_L$ & H x W x 3 \\ 2 & concat 1, $I_L$ & H x W x 6 \\ 3 & Warp($\mathbf{d_R^3}$, $\mathbf{d_L^3}$) - $\mathbf{d_L^3}$ & H x W x 1 \\ 4 & concat 3, $\mathbf{d_L^3}$ & H x W x 2 \\ 5 & 3x3 conv on 2, 16 features & H x W x 16 \\ 6 & 3x3 conv on 4, 16 features & H x W x 16 \\ 7 & concat 5,6 $I_L$ & H x W x 32 \\ \multirow{2}{*}{8-13} & (3x3 conv, residual block) x 6, & \multirow{2}{*}{H x W x 32} \\ & dil rate 1,2,4,8,1,1 & \\ 14 & 3x3 conv, 2 features as 14(a) and 14(b) & H x W x 2 \\ 15 & $\mathbf{d^r}$: 14(a) + $\mathbf{d_L^3}$ & H x W \\ 16 & \textbf{O}: sigmoid on 14(b) & H x W \\ \hline \end{tabular}
CR-48333
\begin{tabular}{ccccc} \toprule \textbf{Subjects} & \textbf{Version} & \textbf{Format} & \textbf{Size} & \textbf{LoC} \\ \midrule boringssl @@ & 2016-02-12 & lib & 6.8M & 0.3k \\ freetype @@ & 2017 & font & 6.3M & 0.5k \\ libcxx @@ & 2017-01-27 & lib & 1.9M & 5.0k \\ libxml @@ & libxml2-v2.9.2 & xml & 12M & 15.7k \\ re2 @@ & 2014-12-09 & lib & 5.6M & 0.9k \\ libarch @@ & libarch 2017-01-04 & text & 3.7M & 3.0k \\ size @@ & Binutils-2.34 & elf & 10M & 7.9k \\ readelf -a @@ & Binutils-2.34 & elf & 5.4M & 20.5k \\ objdump -d @@ & Binutils-2.34 & elf & 16M & 5.4k \\ avconv -y -i @@ -f null & Libav-12.3 & mp4 & 77M & 2.9k \\ infotocap @@ & ncurses-6.1 & text & 1.1M & 4.9k \\ pdftotext @@ /dev/null & xpdf-4.02 & pdf & 7.9M & 0.9k \\ tiff2bw @@ /dev/null & tiff-4.1 & tiff & 2.6M & 0.5k \\ ffmpeg -i @@ & ffmpeg-4.1.3 & mp4 & 41M & 4.9k \\ gnuplot @@ & gnuplot-5.5 & text & 8.5M & 1.0k \\ tcpdump -nr @@ & tcpdump-4.9.3 & pcap & 6.3M & 2.6k \\ \bottomrule \end{tabular}
AI-25582
\begin{tabular}{|c|c|c|c|} \hline \multirow{2}{*}{Embedding} & \multicolumn{3}{c|}{Distance} \\\cline{2-4} & $\ell_1$ & $\ell_2$ & Cosine \\\hline FACSNet-CL-F & 47.1 & 47.1 & 40.7 \\\hline FACSNet-CL-P & 45.3 & 44.2 & 48.3 \\\hline AFFNet-CL-F & 49.0 & 47.7 & 49.0 \\\hline AFFNet-CL-P & 52.4 & 51.6 & 53.3 \\\hline AFFNet-TL & - & 49.6 & - \\\hline FECNet-16d & - & 81.8 & - \\\hline \end{tabular}
CR-29305
\begin{tabular}{@{}l@{}} Substitute \\ Gap($i$)$\rightarrow$Msg($j$) \\ Msg($j$)$\rightarrow$Gap($i$) \end{tabular}
CR-6454
\begin{tabular}{|p{8cm}|} \Xhline{1pt} \begin{center} $\mathtt{\pi}_{\rm S-SIP}$: Functionality of S-SIP \end{center} \textbf{Input:} The client (named $P_0$) holds a set of $t$ pairs $(X, S)=\{(x_1, s_1), \cdots, (x_t, s_t)\}$, while the server (named $P_1$) holds dataset of key-values pairs $(Y, G)=\{(y_1, g_1), \cdots, (y_n, g_n)\}$ \\ \textbf{Output:} $P_b$ learns a set $\mathbf{U}_b=\{\left \langle \mathtt{u}_i\right \rangle_b\}_{i\in t}$, where $\left \langle \mathtt{u}_i\right \rangle_b=\left \langle s_ig_j\right \rangle_b$ if $x_i=y_j$ for some $j\in [n]$. otherwise $\left \langle \mathtt{u}_i\right \rangle_b=\left \langle 0\right \rangle_b$. \\ \\\Xhline{1pt} \end{tabular}
CR-33963
\begin{tabular}{|c|c|c|} \hline \textbf{Parameter} & \textbf{Type} & \textbf{Description} \\ \hline drcId & bytes32 & Identifier of the DRC \\ \hline farAvailable & uint256 & FAR (Floor Area Ratio) available for allocation \\ \hline landCount & uint256 & Total count of sub-divided lands \\ \hline owner & address & Owner of NFT \\ \hline lands & mapping & Mapping of land sub-divisions \\ \hline \end{tabular}
CR-16760
\begin{tabular}{ll|ll|ll} \textbf{Training / Testing Set} & $\bm{\sigma^2}$ & \textbf{PP (dev)} & \textbf{PP (test)} & \textbf{PP (dev, large)} & \textbf{PP (test, large)} \\ \hline Brown / Reddit\_10k & 0 & 1561.20 & 1584.54 & 1652.65 & 1677.42 \\ Reddit\_10k / Reddit\_10k & 0 & 3805.83 & 3787.68 & 1254.48 & 1259.23 \\ fine-tuned / Reddit\_10k & 0.0 & 1035.45 & 1037.81 & 1016.65 & 1019.31 \\ fine-tuned / Reddit\_10k & 0.1 & 1457.94 & 1480.84 & 1604.42 & 1627.56 \\ fine-tuned / Reddit\_10k & 1.1 & 1450.01 & 1473.48 & inf & inf \end{tabular}
SE-19395
\begin{tabular}{lc} \hline \multicolumn{1}{c}{\textbf{Search engines}} & \textbf{\#non-duplicated search result} \\ \hline Google search & 495 \\ Medium search & 358 \\\hline \textbf{Total} & \textbf{853} \\\hline \hline \end{tabular}
SE-23962
\begin{tabular}{l|r|cccc} \toprule Model & \# outputs & 256 & 512 & 768 & 1024 \\ \midrule \multirow{4}{*}{\texttt{CodeParrot-small}} & 5,000 & 6,666 & 9,080 & 11,041 & 14,031 \\ & 10,000 & 10,627 & 14,655 & 17,664 & 22,243 \\ & 15,000 & 14,015 & 19,444 & 23,863 & 29,133 \\ & 20,000 & 16,966 & 23,574 & 29,204 & 35,363 \\ \midrule \multirow{4}{*}{\texttt{CodeParrot}} & 5,000 & 9,785 & 14,645 & 18,325 & 22,570 \\ & 10,000 & 16,062 & 24,345 & 32,519 & 37,448 \\ & 15,000 & 21,560 & 32,666 & 42,853 & 50,127 \\ & 20,000 & 26,420 & 40,125 & 51,059 & 61,787 \\ \bottomrule \end{tabular}
SE-22543
\begin{tabular}{lrrr} \toprule \multirow{2}{*}{\bf Selection Rule} & \multicolumn{3}{c}{\bf Dataset} \\ \cmidrule{2-4} & {\bf Spark} & {\bf Hadoop} & {\bf Kibana} \\ \midrule None & 81 & 92 & 184 \\ Length & 33 & 25 & 77 \\ Length+Content & 59 & 57 & 114 \\ \bottomrule \end{tabular}
AI-2635
\begin{tabular}{||ccc||} \hline Cube no. & Edge length & Color \\ [0.5ex] \hline\hline 1 & 5cm & Red \\ \hline 2 & 4cm & Red \\ \hline 3 & 3cm & Red \\ \hline 4 & 2cm & Red \\ \hline 5 & 10cm & Blue \\ \hline 6 & 8cm & Blue \\ \hline 7 & 6cm & Blue \\ \hline 8 & 2cm & Blue \\ \hline \end{tabular}
CR-44786
\begin{tabular}{ccccc} \toprule Method & Avg. of AUROC & Avg. of F1 score & Std. of AUROC & Std. of F1 score \\ \midrule STRIP & 0.3930 & 0.5026 & 0.0997 & 0.0027 \\ FreqDetector & 0.7911 & 0.7671 & 0.2235 & 0.2027 \\ \rowcolor[rgb]{ .906, .902, .902} Ours & 0.7749 & 0.7856 & 0.0306 & 0.0336 \\ \bottomrule \end{tabular}
CR-36658
\begin{tabular}{|c|l|l|} \hline No & Rule & Description \\ \hline 1 & Feature indifference & A value of a feature is indifferent at \\ & & bot and normal user \\ \hline 2 & Feature invariance & Summation of a feature is 0, and \\ & & standard deviation of a feature is 0 \\ & & at bot and normal user, respectively \\ \hline \end{tabular}
CL-2666
\begin{tabular}{>{\raggedright\arraybackslash}p{2.7cm}>{\raggedright\arraybackslash}p{2.7cm}|p{0.6cm}} \hline External representation & Internal representation & Test BLEU \\ \hline Plain BPE & Plain BPE & 29.2 \\ Linearized derivation & Linearized derivation & 28.8 \\ \hline Linearized tree & Plain BPE & 28.9 \\ Plain BPE & Linearized derivation & 28.8 \\ Linearized derivation & Plain BPE & 29.4$^\dagger$ \\ POS/BPE & Plain BPE & 29.3$^\dagger$ \\ Plain BPE & POS/BPE & 29.4$^\dagger$ \\ \end{tabular}
CV-5329
\begin{tabular}{|p{3.5cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}||p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|} \hline \multirow{2}{*}{Method} & \multicolumn{4}{c|}{Market1501 $\rightarrow$ DukeMTMC-reID} & \multicolumn{4}{c|}{DukeMTMC-reID $\rightarrow$ Market1501 } \\ \cline{2-9} \cline{2-9} & R1 & R5 & R10 & mAP & R1 & R5 & R10 & mAP \\ \hline Direct Transfer & 42.4 & 56.5 & 63.2 & 23.0 & 52.0 & 70.2 & 76.5 & 22.0 \\ CycleGAN & 44.1 & 58.6 & 65.0 & 23.6 & 55.2 & 72.8 & 79.4 & 23.2 \\ PTGAN & 27.4 & - & 50.7 & - & 38.6 & - & 66.1 & - \\ SPGAN & 41.1 & 56.6 & 63.0 & 22.3 & 51.5 & 70.1 & 76.8 & 22.8 \\ ATNet & 45.1 & 59.5 & 64.2 & 24.9 & 55.7 & 73.2 & 79.4 & 25.6 \\ M2M-GAN & 49.6 & - & - & 26.1 & 57.5 & - & - & 26.8 \\ CR-GAN & 52.2 & - & - & 30.0 & 59.6 & - & - & 29.6 \\ \hline EDAAN with Triplet & 55.2 & 68.0 & 72.6 & 33.5 & 62.3 & 81.8 & 84.0 & 32.7 \\ EDAAN with Quartet & \textbf{57.8} & \textbf{72.2} & \textbf{78.3} & \textbf{39.6} & \textbf{64.5} & \textbf{83.0} & \textbf{86.3} & \textbf{35.4} \\ \hline \end{tabular}
AI-11117
\begin{tabular}{ccccccccc} \hline Dataset & level1 & level2 & level3 & level4 & level5 & level6 & level7 & level8 \\ \hline RCV1 & 236334 & 20523 & 11850 & 23211 & - & - & - & - \\ NYT & 15161 & 2923 & 1160 & 842 & 1066 & 925 & 992 & 1460 \\ WOS & 6712 & 351 & - & - & - & - & - & - \\ \hline \end{tabular}
CR-46823
\begin{tabular}{|l||p{1.5cm}|p{1.5cm}|p{1.25cm}||p{1.5cm}|p{1.5cm}|p{1.25cm}|} \hline ~ & \multicolumn{3}{c||}{TCP} & \multicolumn{3}{c|}{DCCP} \\ ~ & Reported Attacks & Interesting \newline (Off-path) Attacks & Unique Attacks & Reported Attacks & Interesting \newline (Off-path) Attacks & Unique Attacks \\ \hline Random & 996 & 0 & 0 & 992 & 0 & 0 \\ Manual & 219 & 63 & 5 & 209 & 44 & 2 \\ NLP-based & 220 & 69 & 5 & 254 & 47 & 2 \\ \hline \end{tabular}
CR-8746
\begin{tabular}[c]{@{}l@{}}CopywritingTranslations,SocialMediaMarketingServices,\\OptimizationPromotionandAudit\end{tabular}
CR-7160
\begin{tabular}{cccccccccc} \toprule \multirow{2}{*}{Data} & \multirow{2}{*}{Measures} & \multicolumn{3}{c}{\texttt{CFD}} & \multicolumn{3}{c}{\texttt{CFD LRT}} \\ \cmidrule(lr){3-8} & {} & \texttt{SCFE} & \texttt{GS} & \texttt{CCHVAE} & \texttt{SCFE} & \texttt{GS} & \texttt{CCHVAE} \\ \midrule \multirow{4}{*}{A} & AUC & 0.4971 & 0.5038 & 0.5008 & 0.4988 & \textbf{0.5103 } & 0.5066 \\ & BA & 0.5115 & 0.5125 & 0.5056 & \textbf{0.5132} & 0.5098 & 0.5176 \\ & TPR (0.1) & 0.1039 & 0.1020 & 0.1058 & 0.1010 & 0.1043 & \textbf{0.1298} \\ & TPR (0.01) & 0.0121 & 0.0097 & 0.0157 & \textbf{0.0158} & 0.0095 & 0.0134 \\ \midrule \multirow{4}{*}{H} & AUC & 0.5887 & 0.5410 & 0.4874 & 0.5829 & 0.5027 & \textbf{0.6789} \\ & BA & 0.5904 & 0.5404 & 0.5473 & 0.5924 & 0.5326 & \textbf{0.6389} \\ & TPR (0.1) & 0.1130 & 0.1223 & 0.0863 & 0.1106 & 0.1142 & \textbf{0.2635} \\ & TPR (0.01) & 0.0155 & 0.0176 & 0.0016 & 0.0135 & 0.0372 & \textbf{0.0513} \\ \midrule \multirow{4}{*}{D} & AUC & \textbf{0.5051} & 0.5000 & NA & 0.5050 & 0.5047 & NA \\ & BA & 0.5100 & 0.5133 & NA & \textbf{0.5145} & 0.5136 & NA \\ & TPR (0.1) & 0.1020 & 0.0950 & NA & 0.0894 & \textbf{0.1181} & NA \\ & TPR (0.01) & 0.0093 & 0.0083 & NA & 0.0113 & \textbf{0.0159} & NA \\ \bottomrule \end{tabular}
SE-15978
\begin{tabular}{lllr} \hline \textbf{ID} & \textbf{Mistake Type} & \textbf{Associated Mistake Class} & \textbf{Occurance} \\ \hline 1 & Lack of preparation & \textit{Teamwork and Planning} & 4 \\ 2 & Lack of planning & \textit{Teamwork and Planning} & 3 \\ \hline 3 & Not identifying stakeholders & \textit{Question Omission} & 1 \\ 4 & Not asking about existing system & \textit{Question Omission} & 6 \\ \hline 5 & Asking long question & \textit{Question Formulation} & 3 \\ 6 & Asking unnecessary question & \textit{Question Formulation} & 7 \\ 7 & Asking stakeholder for solution & \textit{Question Formulation} & 15 \\ 8 & Asking vague question & \textit{Question Formulation} & 32 \\ 9 & Asking technical question & \textit{Question Formulation} & 5 \\ \hline 10 & Incorrect ending of the interview & \textit{Order of interview} & 6 \\ \hline 11 & Influencing stakeholder & \textit{stakeholder interaction} & 9 \\ 12 & No rapport with stakeholder & \textit{stakeholder interaction} & 16 \\ 13 & Unnatural dialogue style & \textit{Communication skills} & 11 \\ \hline \end{tabular}
PL-2065
\begin{tabular}{l|lll} \hline \multirow{2}{*}{$b_0$} & \texttt{int i = 0;} & & \\ & & \verb|Update|: $\phi(b_1)$ & \verb|Goto| $b_1$ \\ \cline{1-1}\cline{3-4} \multirow{3}{*}{$b_1$} & & Skip to $b_2$ unless $SAT(\phi(b_1))$ & \\ & \texttt{while (i < b) \{} & & \\ & & \verb|Update|: $\phi(b_2)$, $\phi(b_5)$ & \verb|Goto| $b_2$ \\ \cline{1-1}\cline{3-4} \multirow{4}{*}{$b_2$} & & Skip to $b_3$ unless $SAT(\phi(b_2))$ & \\ & \texttt{\quad i++} & & \\ & \texttt{\quad if (i != a)} & & \\ & & \verb|Update|: $\phi(b_3)$, $\phi(b_4)$ & \verb|Goto| $b_3$ \\ \cline{1-1}\cline{3-4} \multirow{3}{*}{$b_3$} & & Skip to $b_4$ unless $SAT(\phi(b_3))$ & \\ & \texttt{\quad\quad continue;} & & \\ & & \verb|Update|: $\phi(b_1)$ & \verb|Goto| $b_1$ \\ \cline{1-1}\cline{3-4} \multirow{3}{*}{$b_4$} & & Skip to $b_5$ unless $SAT(\phi(b_4))$ & \\ & \texttt{\quad \ldots} & & \\ & \texttt{\}} & \verb|Update|: $\phi(b_1)$ & \verb|Goto| $b_1$ \\ \cline{1-1}\cline{3-4} \multirow{1}{*}{$b_5$} & \texttt{return;} & & \\ \hline \end{tabular}
CV-8720
\begin{tabular}{ccccccccc} \hline Model & 0.25 & 0.5 & 1 & 2 & 4 & 8 & 16 & 32 \\[0.5ex] \hline Chained & 4.76 & 8.33 & 15.55 & 28.23 & 44.69 & 58.62 & 65.89 & 67.49 \\ 2-SHG & 5.59 & 10.87 & 22.25 & 41.62 & 61.78 & 73.9 & 79.21 & 79.78 \\ DeepPose & 3.3 & 4.86 & 7.99 & 12.98 & 18.26 & 21.33 & 22.79 & 23.12 \\ \hline \end{tabular}
SE-1008
\begin{tabular}{l|c|c|} \cline{2-3} \multicolumn{1}{c|}{} & Description & Artifact Type \\ \hline \multicolumn{1}{|l|}{{CR01}} & \makecell{Every lifeline must have \\ a corresponding class.} & uml:Lifeline \\ \hline \multicolumn{1}{|l|}{{CR02}} & \makecell{Every transition has to have \\ a corresponding message.} & uml:Transition \\ \hline \multicolumn{1}{|l|}{{CR03}} & \makecell{Statechart Action must be defined \\ as an operation in the owner’s class.} & uml:Transition \\ \hline \multicolumn{1}{|l|}{{CR04}} & \makecell{Message actions must be defined \\ as an operation in receiver’s class.} & uml:Message \\ \hline \multicolumn{1}{|l|}{{CR05}} & \makecell{Operation parameters \\ must have unique names.} & uml:Operation \\ \hline \multicolumn{1}{|l|}{{CR06}} & \makecell{An Operation has at most \\ one return parameter.} & uml:Operation \\ \hline \multicolumn{1}{|l|}{{CR07}} & \makecell{An interface can have at \\ most one generalization.} & uml:Interface \\ \hline \multicolumn{1}{|l|}{{CR08}} & \makecell{An interface can only contain \\ public operations and no attributes.} & uml:Interface \\ \hline \multicolumn{1}{|l|}{{CR09}} & \makecell{No two class operations may \\ have the same signature.} & uml:Class \\ \hline \multicolumn{1}{|l|}{{CR10}} & \makecell{No two fields may have \\ the same name.} & uml:Class \\ \hline \end{tabular}
CR-52556
\begin{tabular}{||cccc||} \hline \textbf{Datasets} & \textbf{Nodes (N)} & \textbf{Dimension (d)} & \textbf{Classes (c)} \\ [0.5ex] \hline\hline Iris & 150 & 4 & 3 \\ \hline Glass & 214 & 9 & 6 \\ \hline Wine & 178 & 13 & 3 \\ \hline Control Chart & 600 & 60 & 6 \\ \hline Parkinsons & 195 & 22 & 2 \\ \hline Vertebral & 310 & 6 & 3 \\ \hline Breast tissue & 106 & 9 & 6 \\ \hline Seeds & 210 & 7 & 3 \\ [1ex] \hline \end{tabular}
CR-29421
\begin{tabular}{p{3cm}<{\raggedright}p{5cm}<{\raggedright}p{9cm}<{\raggedright}} \hline \textbf{Type} & \textbf{Approach} & \textbf{Brief Introduction} \\ \hline \multirow{4}{3cm}{Original Approaches with complete process frameworks} & E-Safety Vehicle Intrusion Protected Applications (EVITA) & EVITA approach considers four security objectives (safety, privacy, financial, operational) and uses attacks trees to identify threats and assess risks . \\ \cline{2-3} & Threat, Vulnerabilities, and implementation Risks Analysis (TVRA) & TVRA is a process-driven TARA approach to systematically identify unwanted incidents which need to be avoided . \\ \cline{2-3} & Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) & OCTAVE is a process-driven TARA method which is best suited for enterprise information security risk assessments . \\ \cline{2-3} & HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS) & HEAVENS is a systematic approach of deriving security requirements for vehicle E/E systems, including processes and tools supporting for TARA . \\ \hline \multirow{3}{3cm}{Approaches evolved from other disciplines and support co-analysis} & A Security-Aware Hazard and Risk Analysis Method (SAHARA) & SAHARA is a combined approach of the Hazard Analysis and Risk Assessment (HARA) with the STRIDE model and outlines the impacts of security issues on safety concepts . \\ \cline{2-3} & Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) & FMVEA is an approach evolved from the Failure Mode and Effect Analysis (FMEA) to identify vulnerability cause-effect chains for security . \\ \cline{2-3} & Combined Harm Assessment of Safety and Security (CHASSIS) & CHASSIS is a unified process for safety and security by using UML-based models (e.g. misuse cases and sequence diagrams) . \\ \hline \end{tabular}
CV-13976
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Methods & Land & Forest & Residential & Haystack & Road & Church & Car & Water & Sky & Hill & Person & Fence & Overall \\ \hline w/ Base Train & .495 & .496 & .774 & .000 & .252 & .166 & .000 & .006 & .952 & .371 & .000 & .060 & .298 \\ w/ SegProp Train & \textbf{.540} & \textbf{.516} & \textbf{.822} & .586 & \textbf{.432} & \textbf{.382} & \textbf{.066} & .146 & \textbf{.985} & \textbf{.407} & \textbf{.471} & \textbf{.233} & \textbf{.466} \\ \hline \end{tabular}
CV-24411
\begin{tabular}{l|cc|cc} \specialrule{1.2pt}{1pt}{1pt} \multirow{2}{*}{\hspace{0.08cm} Method} & \multicolumn{2}{c|}{Segmentation} & \multicolumn{2}{c}{Robustness} \\ \cline{2-5} & \textbf{B} & \textbf{W} & \textbf{B} & \textbf{W} \\ \specialrule{1.2pt}{1pt}{1pt} DeepLabv3-Res50 & 73.9 & 74.1 & 53.7 & \textbf{55.8} \\ DeepLabv3-Res101 & 75.5 & 75.2 & 49.8 & \textbf{51.9} \\ \specialrule{1.2pt}{1pt}{1pt} \end{tabular}
CL-1656
\begin{tabular}{lrr} \toprule $K$ & Successor surprisal & Total entropy \\ \midrule 5 & 0.212 & 0.541 \\ 50 & 0.335 & 0.820 \\ 500 & 0.397 & 0.947 \\ 5000 & 0.434 & 0.992 \\ 50000 & 0.454 & 1 \\ \bottomrule \end{tabular}
CR-49011
\begin{tabular}{cc} \toprule Component & Types considered \\ \midrule Trend & linear model, local level, local linear \\ Seasonal & hourly, daily \\ Error & Gaussian, AR(p): autoregressive model of order p=1,2 \\ \bottomrule \end{tabular}
CR-2892
\begin{tabular}{cccccc} \toprule & CIFAR10 & CIFAR100 & Purchase100 & Texas100 & Location \\ \midrule $p^*$ & 0.13 & 0.11 & 0.015 & 0.005 & 0.015 \\ \bottomrule \end{tabular}
CR-39239
\begin{tabular}{lccc} \textbf{Dataset} & \textbf{Classes} & \textbf{Instances/Class} & \textbf{Total} \\ \hline Undefended & 95 & 1000 & 95,000 \\ WTF-PAD & 95 & 1000 & 95,000 \\ Walkie-Talkie (sim.) & 100 & 900 & 90,000 \\ Walkie-Talkie (real) & 100 & 750 & 75,000 \\ Onion Sites & 538 & 77 & 41,426 \\ \hline \end{tabular}
AI-37528
\begin{tabular}{c|c|c|c} \hline $\pi_b$ & 20$\times$20 & 50$\times$20 & 100$\times$20 \\ \hline \hline MWKR & \textbf{1803.1} & \textbf{3147.3} & \textbf{5676.0} \\ MOR & 1831.7 & 3229.8 & 5728.3 \\ SPT & 1813.8 & 3201.7 & 5718.7 \\ FIFO & 1826.4 & 3177.6 & 5692.9 \\ \hline \end{tabular}
AI-18721
\begin{tabular}{r|r|r|r} & \textbf{Wikipedia} & \textbf{Wikinews} & \textbf{Science} \\ \hline \textbf{Sentences} & 15,000 & 14,682 & 46,715 \\ \textbf{Verbs} & 32,758 & 34,026 & 66,653 \\ \textbf{Questions} & 75,867 & 80,081 & 143,388 \\ \textbf{Valid Qs} & 67,146 & 70,555 & 127,455 \end{tabular}