id
stringlengths
4
8
image
imagewidth (px)
4
1.34k
latex
stringlengths
90
2.83k
CR-52846
\begin{tabular}{|c|l|} \hline Symbol & Explanation \\ \hline $L$ & The lumped random variable $L = (W, D)$. \\ \hline $H$ & The hyper-hidden state of the HMM $H = (L_1, \dots, L_m, U)$. \\ \hline $V$ & The visible state of the HMM which is the requested DN. \\ \hline \end{tabular}
CV-31423
\begin{tabular}{l|cc|c} \toprule \multirow{2}{*}{Method} & \scriptsize{CUB-200-2011$\to$} & \scriptsize{CUB-200-Paintings} & \multirow{2}{*}{AVG} \\ & \scriptsize{CUB-200-Paintings} & \scriptsize{$\to$CUB-200-2011} & \\ \hline ResNet-50 & 47.9 & 36.6 & 42.3 \\ DANN & 57.5 & 43.0 & 50.3 \\ JAN & 62.4 & 40.4 & 51.4 \\ MCD & 63.4 & 43.6 & 53.5 \\ BSP & 63.3 & 46.6 & 55.0 \\ SAFN & 61.4 & 48.9 & 55.2 \\ \hline CDAN & 63.2 & 45.4 & 54.3 \\ +Ours & 68.3 & 53.8 & 61.1 \\ \hline PAN & 67.4 & 50.9 & 59.2 \\ +Ours & \textbf{70.5} & \textbf{56.0} & \textbf{63.3} \\ \bottomrule \end{tabular}
PL-1654
\begin{tabular}{lcc} \toprule Model & Acc$_\text{ex}$ & Execution Errors \\ \midrule Seq2Seq (2017) & 77.0 & 10.5 \\ Seq2Seq + EG (5) & 77.3 & \phantom{1}6.9 \\ Seq2Seq + EG (10) & 77.9 & \phantom{1}6.3 \\ \bottomrule \end{tabular}
AI-29081
\begin{tabular}{ll} \multicolumn{2}{c}{\textbf{Manifest of supplementary materials package: MultimediaAppendix}} \\ \toprule Path & Description \\ \midrule \verb|example_data/| & Example of audio records \\ \quad \verb|radio_corpus/| & 5 West African Radio Corpus file samples \\ \quad \verb|asr/| & 10 West African Virtual Assistant ASR Corpus file samples \\ \quad \verb|lang_id/| & \\ \quad \quad \verb|maninka/| & 2 Examples of audio records contaning Maninka language \\ \quad \quad \verb|pular/| & Examples of audio records contaning Pular language \\ \quad \quad \verb|susu/| & Examples of audio records contaning Susu language \\ \bottomrule \end{tabular}
CL-1973
\begin{tabular}{c|c|cc|cc|cc} \toprule Model & \multicolumn{1}{c|}{EM} & \multicolumn{2}{c|}{Precision} & \multicolumn{2}{c|}{Recall} & \multicolumn{2}{c}{$F_1$} \\ & & unwgt & wgt & unwgt & wgt & unwgt & wgt \\ \midrule & \multicolumn{7}{c}{CSU data} \\ \midrule LSTM & 47.4 & 76.6 & 85.9 & 59.3 & 78.7 & 65.3 & 81.7 \\ BLSTM & 48.2 & 76.1 & 86.0 & 57.6 & 79.4 & 63.5 & 82.2 \\ DeepTag-M & 48.6 & 76.8 & 86.3 & 58.7 & 79.6 & 64.6 & 82.4 \\ \textbf{DeepTag} & \textbf{48.4} & \textbf{79.9} & \textbf{86.1} & \textbf{62.1} & \textbf{79.8} & \textbf{68.0} & \textbf{82.4} \\ \midrule & \multicolumn{7}{c}{PP data} \\ \midrule LSTM & 13.8 & 48.1 & 65.7 & 31.8 & 51.9 & 33.8 & 54.4 \\ BLSTM & 13.8 & 47.3 & 66.0 & 35.6 & 57.9 & 36.9 & 58.4 \\ DeepTag-M & 17.1 & 53.4 & 68.0 & 37.9 & 59.9 & 40.6 & 61.1 \\ \textbf{DeepTag} & \textbf{17.4} & \textbf{56.5} & \textbf{70.3} & \textbf{41.4} & \textbf{62.4} & \textbf{43.2} & \textbf{63.4} \\ \bottomrule \end{tabular}
AI-15640
\begin{tabular}[c]{@{}l@{}}{[}usr{]}I'dlikeasportsplaceinthecentreplease.\\{[}sys{]}Therearenoresultsmatchingyourquery.\\CanItryadifferentareaortype?\end{tabular}
SE-3104
\begin{tabular}{lcrrrc} \hline \textit{\textbf{cluster ID}} & \textit{\textbf{size}} & \textit{\textbf{power}} & \textit{\textbf{legitimacy}} & \textit{\textbf{urgency}} & \textit{\textbf{definitive stk.}} \\ \hline 4 ($> Q3$) & 25 & 34.91 & 94.40 & 31.88 & $\mathbf{Def_1}$ \\ 3 $(Q2, Q3]$ & 24 & 30.06 & 38.83 & 23.17 & \\ 2 $(Q1, Q2]$ & 23 & 12.27 & 25.35 & 19.61 & \\ 1 ($\leq Q1]$ & 26 & 2.93 & 7.85 & 11.73 & \\ \hline \end{tabular}
CV-13858
\begin{tabular}{lcc} \toprule Method & Kinetics & SSv2$^\dagger$ \\ \midrule $\Omega{=}\{2,3\}$ order reversed & {\bf 85.9} & 51.3 \\ $\Omega{=}\{2,3\}$ & {\bf 85.9} & {\bf 59.1} \\ \bottomrule \end{tabular}
CR-54999
\begin{tabular}{@{}cccccc@{}} \toprule & IMDB & PROTEINS & COLLAB & MNIST & CIFAR10 \\ \midrule GST & 3.3 & 7.2 & 7.7 & 65.9 & 113.0 \\ GST UU & 10.0 & 11.0 & 50.0 & 550.0 & 450.0 \\ GST Retrain & 10 & 11 & 50 & 550 & 450 \\ linear-GST & 3.0 & 6.8 & 6.3 & 54.1 & 91.6 \\ linear-GST UU & 10.0 & 11.0 & 49.6 & 532.5 & 450.0 \\ \bottomrule \end{tabular}
CR-20242
\begin{tabular}{cccc} \hline & & P(M) & T(ms) \\ \hline \multirow{2}*{Universal} & GAP & 1.64 & 384 \\ & MTA & \textbf{0.62} & \textbf{137} \\ \cline{1-4} \multirow{2}*{Per-instance} & GAP & 3.77 & 342 \\ & MTA & \textbf{1.33} & \textbf{126} \\ \hline \end{tabular}
SE-16931
\begin{tabular}{rll} \toprule Year & Authors & Topic \\ \midrule 1998 & & Migration towards SPL \\ 2001 & & Industry collaboration \\ 2008 & & Industry collaboration \\ & & Evolution operators \\ 2012 & & Evolution operators \\ 2012 & & Change impact analysis \\ 2012 & & Change impact analysis \\ 2013 & & Change impact analysis \\ 2014 & & Evolution operators \\ 2015 & & Change impact analysis \\ 2016 & & Change impact analysis \\ & & Evolution operators \\ \bottomrule \end{tabular}
CV-14030
\begin{tabular}[c]{@{}l@{}}End-to-end+CElossonMLP+learntsigmoidconversion\\+trainedon6000objsignoringsymmetry\\+theoreticallimitsatinference\end{tabular}
SE-1951
\begin{tabular}{lllll} \toprule \textbf{Task} & \textbf{Authors} & \textbf{Reference} & \textbf{Published at} & \textbf{Notes} \\ \midrule & D'Ambros et al. & & ESE'12 & \\ & Tan et al. & & ICSE'15 & \\ & Wang et al. & & ICSE'16 & Cited \\ \multirow{-3}{*}{Defect Prediction} & Kamei et al. & & ESE'16 & Cited \\ \midrule Program Repair & Lutellier et al. & & ISSTA'20 & \\ \midrule Bug Localization & Pradel et al. & & ISSTA'20 & \\ \bottomrule \end{tabular}
AI-40356
\begin{tabular}{|c|c|} \hline Measure & $sim(\mathbf{q},\mathbf{q'})^{2}$ \\ \hline Euclidean & $(\mathbf{q}-\mathbf{q'})^T(\mathbf{q}-\mathbf{q'})$ \\ \hline Weighted Euclidean & $(\mathbf{q}-\mathbf{q'})^T\mathbf{W_{q}}(\mathbf{q}-\mathbf{q'}) $ \\ \hline Mahalanobis & $ (\mathbf{q}-\mathbf{q'})^T\mathbf{\Sigma}^{-1}(\mathbf{q}-\mathbf{q'}) $ \\ \hline Weighted Mahalanobis & $(\mathbf{q}-\mathbf{q'})^T\mathbf{W_{q}}\mathbf{\Sigma}^{-1}(\mathbf{q}-\mathbf{q'}) $ \\ \hline \end{tabular}
AI-1730
\begin{tabular}{|l|cc|cc|} \hline \multirow{2}{*}{Method} & \multicolumn{2}{c|}{LSUN Tower $256^2$} & \multicolumn{2}{c|}{LHQ $256^2$} \\ & FID & Dataset size & FID & Dataset size \\ \hline $t=1$ & 17.51 & 708k & 23.23 & 90k \\ $t=0.99$ & 8.68 & 168k & 10.18 & 50k \\ $t=0.95$ & 8.85 & 116k & 10.48 & 38k \\ $t=0.7$ & 8.83 & 59k & 11.49 & 19k \\ $t=0.5$ & 9.73 & 41.5k & 14.55 & 13k \\ \hline \end{tabular}
CR-14345
\begin{tabular}{ccc} \hline Dataset & Adversarial Label \\ \hline\hline MNIST & Shirts \\ Fashion-MNIST & Digit number 7 \\ GTSRB & Air-planes \\ CIFAR-10 & Flowers \\ \hline \end{tabular}
CV-12119
\begin{tabular}{|c|ccc|} \hline \multirow{2}{*}{Metric} & \multicolumn{3}{c|}{Upscale by 2 of set5 images. } \\[1pt] \cline{2-4} & Bicubic-CNN & Bilinear-CNN & NN-CNN \\[1pt] \hline PSNR & 29.23 & 29.40 & 30.11 \\[1pt] SSIM & 0.54 & 0.59 & 0.71 \\[1pt] \hline \end{tabular}
CV-13157
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|} \hline \multirow{9}{*}{\textbf{SSIM}} & \textbf{Water Type} & \textbf{U-Net} & \textbf{UIE-DAL (Ours)} \\ \cline{2-4} & 1 & \multirow{2}{*}{0.8691} & \multirow{2}{*}{\textbf{0.9313}} \\ \cline{2-2} & 3 & & \\ \cline{2-4} & 5 & 0.8733 & \textbf{0.9364} \\ \cline{2-4} & 7 & 0.8687 & \textbf{0.9353} \\ \cline{2-4} & 9 & 0.8614 & \textbf{0.925} \\ \cline{2-4} & I & 0.8385 & \textbf{0.9129} \\ \cline{2-4} & II & \multirow{2}{*}{0.8385} & \multirow{2}{*}{\textbf{0.9235}} \\ \cline{2-2} & III & & \\ \hline \multirow{9}{*}{\textbf{PSNR}} & 1 & \multirow{2}{*}{21.6283} & \multirow{2}{*}{\textbf{28.4488}} \\ \cline{2-2} & 3 & & \\ \cline{2-4} & 5 & 22.6119 & \textbf{28.6697} \\ \cline{2-4} & 7 & 22.5754 & \textbf{28.5793} \\ \cline{2-4} & 9 & 22.5263 & \textbf{27.6551} \\ \cline{2-4} & I & 22.3236 & \textbf{27.1015} \\ \cline{2-4} & II & \multirow{2}{*}{21.8279} & \multirow{2}{*}{\textbf{28.1602}} \\ \cline{2-2} & III & & \\ \hline \end{tabular}
AI-6624
\begin{tabular}{|c|c|c|} \hline Method & KL & AUC \\ \hline \hline HOG detector* & 8.54 & 0.736 \\ Judd et al.* & 11.00 & 0.715 \\ Itti \& Koch & 16.53 & 0.533 \\ central bias & 9.59 & 0.780 \\ human & 6.14 & 0.922 \\ \hline PDP(without finetuning) & {\bf 7.92} & 0.845 \\ PDP*(with finetuning) & 8.23 & {\bf 0.875} \\ \hline \end{tabular}
AI-16471
\begin{tabular}{|p{3.5cm}|p{3.5cm}|} \toprule \textbf{Input} & \textbf{Output} \\\midrule Two of the cast fainted and most of the rest * repaired * to the nearest bar. & repaired = \emph{Self motion} $\vert$ most of the rest = \emph{Self\_mover} $\vert$ to the nearest bar = \emph{Goal} $\vert$ \\ \hline He blinked , taken aback by the * vigour * of her outburst. & vigour = \emph{Dynamism} $\vert$ of her outburst = \emph{Action} $\vert$ \\ \hline The rain * dripped * down his neck. & dripped = \emph{Fluidic motion} $\vert$ The rain = \emph{Fluid} $\vert$ down his neck = \emph{Path} $\vert$ \\ \hline She * adored * shopping for bargains and street markets and would have got on well with Cherry. & adored = \emph{Experiencer focus} $\vert$ She = \emph{Experiencer} $\vert$ shopping for bargains and street markets = \emph{Content} $\vert$ \\ \hline He * cleared * his throat as the young man looked up. & cleared = \emph{Emptying} $\vert$ He = \emph{Agent} $\vert$ his throat = \emph{Source} $\vert$ \\ \bottomrule \end{tabular}
CV-2881
\begin{tabular}{l|ll|l|ll} \toprule Category & ${T_\mathrm{min}}$ & $T_\mathrm{max}$ & Category & $T_\mathrm{min}$ & $T_\mathrm{max}$ \\ \hline aero plane & 0.034 & 0.160 & bicycle & 0.013 & 0.087 \\ \hline bird & 0.021 & 0.148 & boat & 0.031 & 0.158 \\ \hline bottle & 0.006 & 0.148 & bus & 0.167 & 0.450 \\ \hline car & 0.018 & 0.262 & cat & 0.129 & 0.381 \\ \hline chair & 0.021 & 0.129 & cow & 0.069 & 0.292 \\ \hline potted plant & 0.079 & 0.286 & sheep & 0.076 & 0.302 \\ \hline sofa & 0.082 & 0.284 & train & 0.082 & 0.264 \\ \hline tv/monitor & 0.027 & 0.249 & dining table & 0.012 & 0.109 \\ \hline dog & 0.039 & 0.297 & horse & 0.084 & 0.262 \\ \hline motorbike & 0.132 & 0.356 & person & 0.028 & 0.199 \\ \bottomrule \end{tabular}
CV-25293
\begin{tabular}{c|c|c|c|c|c|c} \hline & No Inter (G=6) & No Intra (G=1) & G=2 & G=4 & G=6 & G=8 \\ \hline \hline Parameters & 11.0M & 20.9M & 11.7M & 12.9M & 14.1M & 15.3 M \\ \hline MAE & 57.00 & 60.11 & 60.04 & 58.85 & {\bf 55.77} & 57.50 \\ MSE & 96.77 & 104.67 & 104.50 & 95.83 & {\bf 90.23} & 98.60 \\ \hline \end{tabular}
AI-3688
\begin{tabular}{c|c|c|c|c|c|c|c|c|c} \multicolumn{2}{c|}{Architecture} & Alexnet & DenseNet-121 & DenseNet-169 & DenseNet-201 & Xception & ResNet-18 & ResNet-34 & ResNet-50 \\ \hline\hline \multicolumn{2}{c|}{MCNN} & 0.18856 & 0.3574 & 0.35958 & 0.54936 & 0.71128 & 0.2506 & 0.27376 & 0.30304 \\ \hline \multirow{3}{*}{LCNN} & \textit{avg} & \textbf{0.336} & 0.47392 & 0.49604 & 0.48392 & 0.69468 & 0.29904 & 0.25228 & \textbf{0.3896} \\ \cline{2-10} & \textit{add} & 0.1 & \textbf{0.55664} & 0.5418 & \textbf{0.60304} & 0.69968 & 0.37636 & 0.37844 & 0.34484 \\ \cline{2-10} & \textit{sub} & 0.1 & 0.53472 & \textbf{0.54212} & 0.576 & \textbf{0.7122} & \textbf{0.39008} & \textbf{0.39488} & 0.36508 \end{tabular}
CL-3671
\begin{tabular}{|l|c|c|} \hline \bf Method & \bf An-Con & \bf Con-An \\ \hline Seq-to-Seq & 23.10 & 31.20 \\ + copying & 26.41 & 35.66 \\ + Local Attention & \textbf{26.95} & \textbf{36.34} \\ \hline \end{tabular}
CV-27291
\begin{tabular}{|c|cccccccc|} \hline Component & & & & & Dubox & & & \\ \hline Batch balance and OHEM? & & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\ IoU loss? & & & \checkmark & \checkmark & \checkmark & \checkmark & & \\ Hooks? & & & & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\ Refine module? & & & & & \checkmark & \checkmark & \checkmark & \checkmark \\ Residual dual scale? & & & & & & \checkmark & \checkmark & \checkmark \\ CRPS loss? & & & & & & & \checkmark & \checkmark \\ Reducing redundancy strategy? & & & & & & & & \checkmark \\ \hline [email protected] & 54.32 & 63.56 & 73.4 & 74.2 & 75.7 & 77.01 & 79.43 & 81.02 \\ \hline \end{tabular}
CV-13967
\begin{tabular}[c]{@{}p{22em}@{}}airplane,train,parkingmeter,cat,bear,suitcase,frisbee,snowboard,fork,sandwich,hotdog,toilet,mouse,toaster,hairdrier\end{tabular}
AI-22250
\begin{tabular}{ll|cccc} \toprule \multicolumn{2}{c|}{{\bf Method}} & & & & \textbf{Persona} \\ Model & Profile & \textbf{Fluency} & \textbf{Engagingness} & \textbf{Consistency} & \textbf{Detection} \\ \midrule Human & Self & 4.31(1.07) & 4.25(1.06) & 4.36(0.92) & 0.95(0.22) \\ \midrule {\em Generative PersonaChat Models} & \\ Seq2Seq & None & 3.17(1.10) & 3.18(1.41) & 2.98(1.45) & 0.51(0.50) \\ Profile Memory & Self & 3.08(1.40) & 3.13(1.39) & 3.14(1.26) & 0.72(0.45) \\ \midrule {\em Ranking PersonaChat Models} & \\ KV Memory & None & 3.81(1.14) & 3.88(0.98) & 3.36(1.37) & 0.59(0.49) \\ KV Profile Memory & Self & 3.97(0.94) & 3.50(1.17) & 3.44(1.30) & 0.81(0.39) \\ \midrule Twitter LM & None & 3.21(1.54) & 1.75(1.04) & 1.95(1.22) & 0.57(0.50) \\ OpenSubtitles 2018 LM & None & 2.85(1.46) & 2.13(1.07) & 2.15(1.08) & 0.35(0.48) \\ OpenSubtitles 2009 LM & None & 2.25(1.37) & 2.12(1.33) & 1.96(1.22) & 0.38(0.49) \\ OpenSubtitles 2009 KV Memory & None & 2.14(1.20) & 2.22(1.22) & 2.06(1.29) & 0.42(0.49) \\ \bottomrule \end{tabular}
CR-32902
\begin{tabular}[c]{@{}c@{}}Walker,Hopper,Humanoid,Ant,\\InvertedPendulum,Reacher,\\RoadRunner,BankHeist,pong,\\Acrobot,andFreeway\end{tabular}
AI-5250
\begin{tabular}{|c|c|c|c|} \hline \textbf{McNemar's Test} & \multicolumn{3}{c|}{\textbf{p-value}} \\ \hline \textbf{Performed with} & \textbf{Herlev Pap Smear} & \textbf{Mendeley LBC} & \textbf{SIPaKMeD Pap Smear} \\ \hline ResNet-50 & 0.0046 & 0.0012 & 0.0005 \\ \hline VGG-16 & 0.0001 & 0.0211 & 0.0007 \\ \hline DenseNet-121 & 0.0103 & 0.0089 & 0.0315 \\ \hline Inception v3 & 0.0007 & 0.0061 & 0.0100 \\ \hline \end{tabular}
PL-182
\begin{tabular}[c]{@{}l@{}}Therearetwoshapeswhichare\\different(i.e.callsontwo\\differentinventedprimitives)\end{tabular}
CL-5858
\begin{tabular}{|lrrr|} \hline\hline System & val EM/F1 & dev EM/F1 & test EM/F1 \\ [0.5ex] \hline\hline Seq2seq Attetion Baseline & & & \\ Match LSTM Baseline & 38.8/ 53.8 & 42.1/55.4 & \\ Coattention + feedforward decoder & 48.6/64.0 & 46.4/60.8 & 46.1/60.1 \\ Coattention + ans-ptr & 49.7/65.2 & & \\ Coattention + ans-ptr + dropout +word lookup & 56.0/69.8 & 61.6/72.3 & \textbf{61.9/72.8} \\[1ex] \hline \end{tabular}
AI-22559
\begin{tabular}{r|r|r|r|r|r} \hline Target Feature ID & \multicolumn{5}{c}{Top5 Highly Correlated Feature IDs} \\ \hline 1 & 72 (0.98) & 87 (0.95) & 44 (0.94) & 92 (0.94) & 87 (0.94) \\ 32 & 111 (0.96) & 114 (0.95) & 100 (0.95) & 15 (0.94) & 119 (0.94) \\ 64 & 127 (0.97) & 15 (0.97) & 119 (0.97) & 114 (0.97) & 57 (0.97) \\ \hline \end{tabular}
CR-4860
\begin{tabular}{@{}llcc@{}} \toprule Multi-PIE Dataset & & \# of subjects & \# of comparisons \\ \cmidrule(r){1-1} \cmidrule(l){3-4} \textbf{Session} & & 264 & 81K \\ \textbf{Facial Rotation} & & 337 & 151K \\ \textbf{Lighting} & & 337 & 131K \\ \textbf{Facial Expression} & & 337 & 104K \\ \bottomrule \end{tabular}
CV-13736
\begin{tabular}{ccc} \hline \multicolumn{3}{c}{Gaussian Kernels of DCRF for Roughness Map} \\ \hline & $\quad\qquad\mathbf{p}_{i}\quad\qquad$ & $\qquad\mathbf{d}_{i}\qquad$ \\ $\kappa_{1}$ & 0.04 & - \\ $\kappa_{2}$ & 0.06 & 0.2 \\ \hline \end{tabular}
SE-14248
\begin{tabular}{|l|r|r|r|} \hline Dataset & Precision & Recall & F1 \\ \hline Accumulo & 0.0399 & \textless0.0001 & \textless0.0001 \\ \hline Ignite & \textless0.0001 & \textless0.0001 & \textless0.0001 \\ \hline Isis & 0.4243 & \textless0.0001 & \textless0.0001 \\ \hline Tika & \textless0.0001 & \textless0.0001 & \textless0.0001 \\ \hline \end{tabular}
SE-19973
\begin{tabular}[c]{@{}l@{}}Signature-basedtechniqueisusedtodetect\\refactoringcandidatesinsoftwarerepositoriesandrankthemusing\\similaritymetrics.Therankingofrefactoringcandidatesdiffersdependingon\\thesimilaritymetric.\end{tabular}
CL-1389
\begin{tabular}{l|c|c|c|c} \hline & \multicolumn{1}{c|}{\textbf{PKU}} & \multicolumn{1}{c|}{\textbf{MSR}} & \multicolumn{1}{c|}{\textbf{AS}} & \multicolumn{1}{c}{\textbf{CITYU}} \\ \hline & 95.8 & 97.1 & 95.3 & 95.6 \\ & 94.3 & 96.0 & 94.6 & 95.6 \\ & 95.7 & 97.3 & - & - \\ & 96.0 & 97.8 & - & - \\ & 96.1 & \textbf{98.1} & 96.2 & 97.2 \\ & 96.1 & 97.5 & - & - \\ & \textbf{96.6} & 97.9 & \textbf{96.6} & \textbf{97.6} \\ \hline \textbf{Our Method} & 95.5 & 97.7 & 95.7 & 96.4 \\ \hline \end{tabular}
CL-5720
\begin{tabular}{l|l|l} & Development & Test \\ \hline Average Intent Accuracy & 0.9859 & 0.9482 \\ Requested Slots F1-score & 0.9769 & 0.9847 \\ \end{tabular}
CV-10891
\begin{tabular}{l} \Xhline{1pt} \textbf{Algorithm 1}: Solve the TWSC Model () via ADMM \\ \hline \textbf{Input:} $\mathbf{Y},\mathbf{W}_{1},\mathbf{W}_{2},\mathbf{W}_{3}$, $\mu$, $\text{Tol}$, $K_{1}$; \\ \textbf{Initialization:} $\mathbf{C}_{0}=\mathbf{Z}_{0}=\mathbf{\Delta}_{0}=\mathbf{0}$, $\rho_{0}>0$, $k=0$, \text{T} = \text{False}; \\ \textbf{While} (\text{T} == \text{false}) \textbf{do} \\ 1. Update $\mathbf{C}_{k+1}$ by solving Eq.\ (); \\ 2. Update $\mathbf{Z}_{k+1}$ by soft thresholding (); \\ 3. Update $\mathbf{\Delta}_{k+1}$ by Eq.\ (); \\ 4. Update $\rho_{k+1}$ by $\rho_{k+1}=\mu\rho_{k}$, where $\mu\ge1$; \\ 5. $k \leftarrow k + 1$; \\ \quad \textbf{if} (Converged) or ($k\ge K_{1}$) \\ 6.\quad\quad \text{T} $\leftarrow$ \text{True}; \\ \quad \textbf{end if} \\ \textbf{end while} \\ \textbf{Output:} Matrices $\mathbf{C}$ and $\mathbf{Z}$. \\ \Xhline{1pt} \end{tabular}
CR-8999
\begin{tabular}{c|c|c|c} \hline \textbf{Program} & \textbf{Vulnerability} & \textbf{Benign\ Gadget\ Chains} & \textbf{Malicious\ Gadget\ Chains} \\ \hline Adobe flash 11.2.202.33 & CVE-2014-0502 & 201097 & 167580 \\ Nginx 1.4.0 & CVE-2013-2028 & 124476 & 103980 \\ Proftpd 1.3.0a & CVE-2006-6563 & 92042 & 60035 \\ Firefox 3.5.10 & CVE-2010-1214 & 211509 & 195920 \\ \hline \end{tabular}
AI-30964
\begin{tabular}{cc} \hline \textbf{Hyperparameter} & \textbf{Value} \\ \hline\hline Preamble length M: & $512$ \\ Initial log($\sigma$): & $-1.0$ \\ Noise power density $N_0$: & $0.01$ \\ Power loss factor $\lambda_p$: & $0.09$ \\ k in kNN: & $3$ \\ Step size: & $0.00245$ \\ Hidden units: & $40$ \\ Training iterations: & $2000$ \end{tabular}
SE-19954
\begin{tabular}{llll} \toprule \textbf{Refactoring-related Categories} \\ \midrule Internal & Inheritance, Abstraction, Complexity, Composition, Coupling, Encapsulation \\ & Design Size, Polymorphism, Cohesion, Messaging, Concern Separation, Dependency \\ External & Functionality, Performance, Compatibility, Readability, Stability, Usability \\ & Flexibility, Extensibility, Efficiency, Accuracy, Accessibility, Robustness, Testability \\ & Correctness, Scalability, Configurability, Simplicity, Reusability, Reliability, Modularity \\ & Maintainability, Traceability, Interoperability, Fault-tolerance, Repeatability, Understandability \\ & Effectiveness, Productivity, Modifiability, Reproducibility, Adaptability, Manageability \\ Code Smell & Duplicate Code, Dead Code, Data Class, Long Method, Switch Statement, Lazy Class \\ & Too Many Parameters, Primitive Obsession, Feature Envy, Blob Class, Blob Operation \\ & Redundancy, Useless class, Code style, Antipattern, Design Flaw, Code Smell \\ & Temporary Field, Old Comment \\ \bottomrule \end{tabular}
CL-4367
\begin{tabular}{p{3.4cm}|c|c|c} \hline & \textbf{\#PPs} & \textbf{MAP} & \textbf{P@1} \\ \hline Glava\v{s}$_{(n=95)}$ & --- & 22.8 & 13.5 \\ WordNet$_{(n=82)}$ & 6.63 & 62.2 & 50.6 \\ Kauchak$_{(n=48)}$ & 4.39 & \textbf{76.4}$^\dagger$ & 68.9 \\ SimplePPDB$_{(n=100)}$ & 8.77 & 67.8 & 78.0 \\ \hline \hline SimplePPDB++$_{(n=100)}$ & \textbf{9.52} & 69.1 & \textbf{80.2} \\ \hline \end{tabular}
CV-17372
\begin{tabular}{lccc} \textbf{Method} & \textbf{\#Params} & \textbf{CIFAR10} & \textbf{CIFAR100} \\ \hline VGGNet(16L) /Enhanced & 138m & 91.4 / 92.45 & - \\ ResNet-110L / 1202L * & 1.7/10.2m & 93.57 / 92.07 & 74.84/72.18 \\ SD-110L / 1202L & 1.7/10.2m & 94.77 / 95.09 & 75.42 / - \\ WRN-(16/8)/(28/10) & 11/36m & 95.19 / 95.83 & 77.11/79.5 \\ DenseNet & 27.2m & 96.26 & 80.75 \\ Highway Network & N/A & 92.40 & 67.76 \\ FitNet & 1M & 91.61 & 64.96 \\ FMP* (1 tests) & 12M & 95.50 & 73.61 \\ Max-out(k=2) & 6M & 90.62 & 65.46 \\ Network in Network & 1M & 91.19 & 64.32 \\ DSN & 1M & 92.03 & 65.43 \\ Max-out NIN & - & 93.25 & 71.14 \\ LSUV & N/A & 94.16 & N/A \\ SimpNet & 5.48M & 95.49/95.56 & 78.08 \\ SimpNet & 8.9M & 95.89 & 79.17 \\ \hline \end{tabular}
AI-19156
\begin{tabular}[c]{@{}l@{}}Depot$-c_2-c_4-c_5-c_7-c_8-c_1-c_6-c_{10}-c_{15}-c_{11}-$\\$c_{3}-c_{9}-c_{13}-c_{18}-c_{12}-c_{16}-c_{14}-$Depot\end{tabular}
CL-3703
\begin{tabular}{p{8cm}|l|l} \toprule {\bf Template Candidates} & {\bf Positive Example Queries} & {\bf Negative Example Queries} \\ \midrule table $:=$ $v : \text{value}$ $t : \text{table}$ & ``Mexican restaurants'' & ``4.5 hotels'' \\ \hline table $:=$ $t : \text{table}$ ``in'' $v : \text{value}$ & ``hotels in Florida'' & ``restaurants in Mexican '' \\ \hline table $:=$ $t : \text{table}$ ``with'' $v : \text{value}$ & ``hotels with fitness center'' & ``restaurants with Mexican'' \\ \hline table $:=$ $t : \text{table}$ ``containing'' $v : \text{value}$ & ``hotels containing fitness center'' & ``restaurants containing Mexican'' \\ \hline table $:=$ $t : \text{table}$ $p : \text{(vb | vb\_prefix)}$ $v : \text{value}$ & ``person works for Google'' & ``restaurants serves Mexican'' \\ \hline table $:=$ $v : \text{value}$ $p : \text{(vb\_suffix | nnp)}$ $t : \text{table}$ & ``Mexican cuisine restaurants'' & ``Nobel prize award person'' \\ \hline table $:=$ $t : \text{table}$ ``with'' $v : \text{value}$ $p : \text{(vb\_suffix | nnp)}$ & ``restaurants with Mexican cuisine'' & ``hotels with Florida state'' \\ \hline table $:=$ $v : \text{value}$ $p : \text{jj\_suffix}$ $p : \text{(jj | jj\_prefix)}$ $t : \text{table}$ & ``5 star rated restaurants'' & ``Nobel prize award received person'' \\ \bottomrule \end{tabular}
CR-43373
\begin{tabular}{l*{6}c} \cmidrule[1pt]{1-7} & \textbf{Min.} & \textbf{Max.} & \textbf{Mean} & \textbf{Mode} & \textbf{Median} & \textbf{Sum} \\ \cmidrule[0.5pt]{1-7} BD & 0.01 & 1.13 & 0.5 & 0.11 & 0.11 & 3.5 \\ ID & 0.004 & 6.41 & 1.06 & 0.1 & 0.33 & 17.02 \\ SESL & 0.584 & 4.24 & 1.59 & 1.0 & 1.23 & 9.57 \\ TDO & - & - & - & - & - & - \\ US & 0.009 & 1.1 & 0.46 & 0.1 & 0.38 & 6.44 \\ HSU & 0.00002 & 11.96 & 1.44 & 0.1 & 1.02 & 171.22 \\ HT & 1.009 & 1.1 & 1.05 & 1.0 & 1.05 & 2.11 \\ SMC & 0.399 & 4.94 & 1.76 & 2.0 & 1.99 & 47.39 \\ \cmidrule[0.5pt]{1-7} Overall & 0.00002 & 11.96 & 1.35 & 1.0 & 1.01 & 257.25 \\ \cmidrule[1pt]{1-7} \end{tabular}
CV-31304
\begin{tabular}{c|cc|cc} \hline \multirow{2}[3]{*}{Methods} & \multicolumn{2}{c|}{DukeMTMC-ReID} & \multicolumn{2}{c}{Market-1501} \\ \cline{2-5} & R-1 & mAP & R-1 & mAP \\ \hline IDE$^{*}$ & 80.1 & 64.2 & 89.0 & 73.9 \\ SENet50$^{*}$ & 81.2 & 64.8 & 90.0 & 75.6 \\ HA-CNN & 80.5 & 63.8 & 91.2 & 75.7 \\ SpaAtt+Q$^{*}$ & 84.7 & 69.6 & 91.6 & 77.4 \\ CASN+IDE & 84.5 & 67.0 & 92.0 & 78.0 \\ MHN-6 (IDE) & \textbf{87.5} & \textbf{75.2} & \textbf{ 93.6} & \textbf{83.6} \\ \hline \end{tabular}
CV-11491
\begin{tabular}{lcc} \toprule & Not learned & Learned \\ \midrule 1 iteration & 46.7 & 49.5 \\ 5 iterations & 51.3 & 55.4 \\ 10 iterations & 52.4 & 59.4 \\ 20 iterations & 53.6 & {\bf 60.7} \\ 50 iterations & 59.2 & {\bf 60.9} \\ 100 iterations & 59.4 & 60.7 \\ \bottomrule \end{tabular}
AI-40261
\begin{tabular}{cccccccccc} \toprule \textbf{Dataset} & \multicolumn{5}{c}{\textbf{SCAN}} & \textbf{SCAN-ext} & \textbf{MiniSCAN} \\ & Simple & Add Jump & Around Right & Length & MCD\,($1$/$2$/$3$) & Extend & Limit \\ \midrule Train Size & $16728$ & $14670$ & $15225$ & $16990$ & $8365$ & $20506$ & $14$ \\ Test Size & $4182$ & $7706$ & $4476$ & $3920$ & $1045$ & $4000$ & $8$ \\ \bottomrule \end{tabular}
CR-36858
\begin{tabular}{|lllllll|} \hline \multicolumn{7}{|l|}{\textbf{$K$-anonymous counterfactual instance}} \\ \hline \multicolumn{1}{|l|}{Identifier} & \multicolumn{3}{|l|}{\textbf{Quasi-Identifiers}} & \multicolumn{2}{l|}{\textbf{Private attributes}} & \multicolumn{1}{l|}{\textbf{Model prediction}} \\ \hline \multicolumn{1}{|l|}{Name} & \multicolumn{1}{|l|}{Age} & \multicolumn{1}{l|}{Gender} & \multicolumn{1}{l|}{City} & \multicolumn{1}{l|}{Salary} & \multicolumn{1}{l|}{Relationship status} & \multicolumn{1}{l|}{Credit decision} \\ \hline \multicolumn{1}{|l|}{\textit{*}} & \multicolumn{1}{|l|}{\textit{24-27}} & \multicolumn{1}{l|}{\textit{F}} & \multicolumn{1}{l|}{\textit{Antwerp}} & \multicolumn{1}{l|}{\textit{\$60K}} & \multicolumn{1}{l|}{\textit{Single}} & \multicolumn{1}{l|}{\textit{Accept}} \\ \hline \end{tabular}
SE-10266
\begin{tabular}{{|l|c|c|c|c|c|}} \hline \multicolumn{6}{|l|}{\textbf{Tester 1}} \\ \hline \textbf{Demands} & \textbf{Task 1} & \textbf{Task 2} & \textbf{Task 3} & \textbf{Task 4} & \textbf{Weight} \\ \hline \hline Mental Demand & 30 & 5 & 65 & 10 & 3 \\ \hline Physical Demand & 5 & 5 & 5 & 5 & 0 \\ \hline Temporal Demand & 75 & 15 & 65 & 35 & 4 \\ \hline Performance & 25 & 20 & 15 & 5 & 2 \\ \hline Effort & 40 & 10 & 70 & 10 & 3 \\ \hline Frustration & 60 & 20 & 30 & 25 & 3 \\ \hline \hline Product Sum & 740 & 205 & 785 & 285 & - \\ \hline Score & 49 & 13 & 52 & 19 & - \\ \hline \end{tabular}
CR-21972
\begin{tabular}{|p{5cm}|m{5cm}|m{5cm}|} \hline Group & Scalability & Maturity \\ \hline List Based & high & high \\ List Based Hidden & high & high \\ Compressed List & high & high \\ Cryptographic Accumulators & low & medium- low \\ Credential Update & high-medium & medium \\ LVVC & high & medium \\ \hline \end{tabular}
PL-2952
\begin{tabular}{llrrr} \hline \multicolumn{1}{c}{} & \multicolumn{1}{c}{} & \multicolumn{3}{c}{\textbf{Metrics: Exact Match}} \\ \cline{3-5} \multicolumn{1}{c}{\multirow{-2}{*}{\textbf{Localization}}} & \multicolumn{1}{c}{\multirow{-2}{*}{\textbf{Transformation}}} & \multicolumn{1}{r}{\textbf{P@1}} & \multicolumn{1}{r}{\textbf{P@3}} & \multicolumn{1}{r}{\textbf{P@50}} \\ \hline None & None & \cellcolor[HTML]{FFFFFF}0.47 & \cellcolor[HTML]{FFFFFF}0.68 & \cellcolor[HTML]{FFFFFF}0.84 \\ Compiler & None & \cellcolor[HTML]{F7FBF5}0.53 & \cellcolor[HTML]{F2F8EE}0.75 & \cellcolor[HTML]{E7F2E1}0.87 \\ Compiler & Fixed Example & \cellcolor[HTML]{88CD97}0.70 & \cellcolor[HTML]{E2EFDA}0.82 & \cellcolor[HTML]{63BE7B}0.89 \\ Compiler & Smart Selection & \cellcolor[HTML]{63BE7B}0.71 & \cellcolor[HTML]{63BE7B}0.85 & \cellcolor[HTML]{E2EFDA}0.87 \\ Abstracted Compiler & None & \cellcolor[HTML]{F8FBF6}0.53 & \cellcolor[HTML]{EEF6E9}0.77 & \cellcolor[HTML]{ECF5E7}0.86 \\ Abstracted Compiler & Fixed Example & \cellcolor[HTML]{63BE7B}0.71 & \cellcolor[HTML]{63BE7B}0.85 & \cellcolor[HTML]{63BE7B}0.89 \\ Abstracted Compiler & Smart Selection & \cellcolor[HTML]{E2EFDA}0.68 & \cellcolor[HTML]{96D2A1}0.84 & \cellcolor[HTML]{E2EFDA}0.87 \end{tabular}
CV-7335
\begin{tabular}{lcc} \hline $\alpha$ & OA & Average F1 \\ \hline NA & \textbf{0.846} & 0.694 \\ 1.1 & 0.820 & 0.703 \\ \textbf{1.2} & 0.822 & \textbf{0.707} \\ 1.3 & 0.829 & 0.697 \\ 1.4 & 0.828 & 0.701 \\ 1.5 & 0.834 & 0.695 \\ \hline \end{tabular}
AI-2666
\begin{tabular}{lrrrrr} \toprule Datasets & \# Relations & \# Entities & \# Train & \# Test & \# Valid \\ \midrule Kinship & 25 & 104 & 8544 & 1074 & 1068 \\[5pt] UMLS & 46 & 135 & 5216 & 661 & 652 \\[5pt] WN18RR & 11 & 40943 & 86835 & 3134 & 3034 \\[5pt] FB15k-237 & 237 & 14541 & 272115 & 20466 & 17535 \\[5pt] YAGO3-10 & 37 & 123182 & 1079040 & 5000 & 5000 \\[2pt] \bottomrule \end{tabular}
AI-9528
\begin{tabular}{p{1.5cm}p{2.5cm}p{2.5cm}} \hline \textsc{Category} & \textsc{Obstacle} & \textsc{Examples} \\ \hline \emph{Repetition} & Cannot identify a surface parameter & What did you say? \\ \hline \emph{Clausal} & Uncertain value for a clausal dialogue history parameter & Are you asking if BO SMITH left? \\ \hline \emph{Intended} & The hearer can find no value for a parameter & Who is Bo? \\ \hline \emph{Correction} & The hearer thinks that the speaker made a mistake and offers an alternative realization & Did you mean to say `Bro'? \\ \hline \end{tabular}
CR-23621
\begin{tabular}{l|lllll} \hline Header length & 16 & 24 & 32 & 40 \\ \hline Trapezoid Area & 0.44 & 5.176 & 10.432 & 10.864 \\ \hline \end{tabular}
CR-51387
\begin{tabular}{@{\quad}ll@{\quad\quad\quad}ll} 569 & ijlt & 1251 & ELTZ \\ 683 & Ifr & 1366 & BCR \\ 797 & Js & 1479 & ADGHKNOQUVXYw \\ 909 & acez & 1593 & m \\ 1024 & bdghknopquvxy & 1821 & M \\ 1139 & FPS & 1933 & W \end{tabular}
CR-20138
\begin{tabular}[b]{@{}c@{}}\underline{\ding{182}\ding{183}\ding{185}\ding{186}\ding{187}\ding{188}\ding{189}\hspace{6pt}}\end{tabular}
CR-23293
\begin{tabular}{cc|cccc} \hline \multirow{2}{*}{Dataset} & Model & \multirow{2}{*}{Method} & Time & Time & Time \\ & Type & & Secure & Non-Sec. & Ratio \\ \hline \multirow{4}{*}{MNIST} & \multirow{4}{*}{FCN} & SFE & 54 & 2.2 & 24.5 \\ & & LTFE & 337 & 2.8 & 120.3 \\ & & CTFE & 207 & 0.8 & 258.7 \\ \hline \multirow{4}{*}{MNIST} & \multirow{4}{*}{LeNet-5} & SFE & 814 & 2.4 & 339.1 \\ & & LTFE & 2163 & 5.3 & 408.1 \\ & & CTFE & 3344 & 3.1 & 1078.7 \\ \hline \multirow{4}{*}{Synthetic} & \multirow{4}{*}{FCN} & SFE & 45 & 1.7 & 26.4 \\ & & LTFE & 206 & 2.2 & 93.6 \\ & & CTFE & 171 & 0.5 & 342 \\ \hline \multirow{4}{*}{Fraud} & \multirow{4}{*}{FCN} & SFE & 20 & 0.33 & 60 \\ & & LTFE & 80.9 & 0.06 & 1348.34 \\ & & CTFE & 70.7 & 0.08 & 883.75 \\ \hline \end{tabular}
AI-6505
\begin{tabular}{l|ccc} \toprule & CIFAR & SVHN & Tiny-ImageNet \\ \bottomrule \toprule Optimizer & SGD & SGD & SGD \\ \midrule Momentum & 0.9 & 0.9 & 0.9 \\ \midrule Weight decay & 1e-4 & 1e-4 & 1e-4 \\ \midrule Epochs & 200 & 200 & 90 \\ \midrule LR & 0.1 & 0.01 & 0.1 \\ \midrule LR decay & (100, 150) & (100, 150) & (30, 60) \\ \bottomrule \end{tabular}
PL-1938
\begin{tabular}{l} Inferred code \\ \toprule int \_\_main\_\_(int var0, int var1) \\ \quad vars: int var2, int var3, int var4 \\ \quad var2 = min(var0, var1) \\ \quad var3 = ((var0 + var1) / 3) \\ \quad return min(var2, var3) \\ \bottomrule \end{tabular}
SE-5255
\begin{tabular}{p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}p{0,5cm}} \hline \textbf{} & \textbf{2014} & \textbf{2015} & \textbf{2016} & \textbf{2017} & \textbf{2018} & \textbf{2019} & \textbf{2020} & \textbf{2021} & \textbf{2022} \\ \hline Posts & 37 & 381 & 1688 & 2559 & 3976 & 5490 & 7107 & 8607 & 531 \\ Bugs & 9 & 121 & 663 & 1054 & 1712 & 2482 & 3378 & 3879 & 251 \\ \hline \end{tabular}
CV-32275
\begin{tabular}{|p{4.5cm}|c|c|} \hline Approach & MCA & MPCA \\ \hline \hline \textit{G-GFU} & 58.9 & 58.7 \\ \hline \textit{G} & 61.3 & 60.5 \\ \hline \hline \textit{cGAN-(GFU and $\hat z$)} & 88.4 & 87.7 \\ \hline \textit{cGAN-GFU} & 89.5 & 88.3 \\ \hline \textit{MLS-GAN- $\hat z$} & 91.2 & 90.8 \\ \hline \hline \cellcolor[HTML]{C0C0C0}MLS-GAN & \cellcolor[HTML]{C0C0C0}\textbf{91.7} & \cellcolor[HTML]{C0C0C0}\textbf{91.2} \\ \hline \end{tabular}
CR-7810
\begin{tabular}{|c|c|c|c|c|c|c|} \hline Model & Training & Testing & Prec. & Recall & F1 & AUC \\ & Scenarios & Scenario & & & & \\ \hline Logistic & 2,9 & 1 & 0.90 & 0.90 & 0.90 & 0.94 \\ Regression & 1,9 & 2 & 0.98 & 0.95 & 0.97 & {\bf 0.99} \\ & 1,2 & 9 & 0.97 & 0.87 & 0.92 & 0.96 \\ \hline Random & 2,9 & 1 & {\bf 0.99} & {\bf 0.97} & {\bf 0.98} & {\bf 0.99} \\ Forest & 1,9 & 2 & 0.95 & {\bf 0.96} & 0.95 & 0.98 \\ & 1,2 & 9 & {\bf 1} & {\bf 0.90} & {\bf 0.94} & {\bf 0.96} \\ \hline Gradient & 2,9 & 1 & {\bf 1} & {\bf 0.97} & {\bf 0.98} & {\bf 0.99} \\ boosting & 1,9 & 2 & {\bf 1} & 0.92 & {\bf 0.96} & {\bf 0.99} \\ & 1,2 & 9 & {\bf 1} & 0.87 & 0.93 & 0.95 \\ \hline \end{tabular}
AI-6477
\begin{tabular}{cll} \toprule $V$ & vertex set including the depot and the $n$ customers, $V=\{v_0,\ldots,v_n\}$ \\ $V'$ & vertex set excluding the depot, $V' = V \backslash \{v_0\}$ \\ $A$ & arc set \\ $D$ & set of possible drone paths $(i,k,j)$ formed by two arcs, $(i,k)$ and $(k,j)$ \\ & that respects the drone's maximum endurance \\ $L$ & set of possible moments for truck visits, $L=\{0,\ldots,n\}$ \\ \midrule $e$ & drone flight endurance time \\ $s^L$ & setup time for launching the drone \\ $s^R$ & setup time for returning the drone \\ $\tau_{i,j}$ & time required by the truck to traverse arc $(i,j)$ \\ $\tau^D_{i,k,j}$ & time required by the drone to traverse arcs $(i,k)$ and $(k,j)$ \\ $M$ & upper bound for the time required by the truck to visit all customers \\ \bottomrule \end{tabular}
PL-1579
\begin{tabular}{|l|l|l|}\hline Qubits & M & N \\ \hline \hline 8 & 2 & 4 \\ \hline 16 & 2 & 8 \\ \hline 32 & 4 & 8 \\ \hline 64 & 8 & 8 \\ \hline 128 & 8 & 16 \\ \hline 256 & 16 & 16 \\ \hline \end{tabular}
CR-7278
\begin{tabular}{|llll|} \hline & & & \\ $\langle 1,A$ & $\longrightarrow$ & $B:$ & $\{N_a.A\}_{k_b}\rangle,$ \\ $\langle 2,B$ & $\longrightarrow$ & $A:$ & $\{B.\hbar ash(B.N_a)\}_{k_a}.\{B.N_b\}_{k_a}\rangle,$ \\ $\langle 3,A$ & $\longrightarrow$ & $B:$ & $A.\{\hbar ash(A.N_b)\}_{k_b}\rangle. $ \\ & & & \\ \hline \end{tabular}
SE-17868
\begin{tabular}{m{1.7cm}|m{2.2cm}|m{2.3cm}|m{2.3cm}|m{1.7cm}|m{1.5cm}}\hline \textbf{Architecture} & \textbf{Example application} & \textbf{Fault-detection techniques} & \textbf{Fault-detection expressiveness} & \textbf{Cross-layer interaction} & \textbf{Code intertwined} \\\hline RIAPS & Discovery service & Heartbeats, timestamps & Low & None & Yes \\\hline iLand & Video surveillance & Not the focus & Not the focus & None & Unknown \\\hline For IEC~61499 & Baggage handling system & Monitor events and data and using ontology & Low & None & No \\\hline For IEC~61499 & Injection moulding machine & Monitor events and data & Low & None & No \\\hline CLAIR (this~paper) & Factory assembly line sorter & Basic heartbeats and timestamps. Expressive observers that are implemented using finite state machines, timed automata and hybrid automata. & High & Yes & No \\\hline \end{tabular}
AI-21861
\begin{tabular}{l|c|c|c|c|c|c|c|c|c} \hline \multirow{2}{*}{\bf Data} & \multirow{2}{*}{\bf Model} & \multicolumn{2}{|c}{{\bf Es$\Rightarrow$En}} & \multicolumn{2}{|c}{{\bf En$\Rightarrow$Es}} & \multicolumn{2}{|c}{{\bf De$\Rightarrow$En}} & \multicolumn{2}{|c}{\bf En$\Rightarrow$De} \\ \cline{3-10} & & dev & test & dev & test & dev & test & dev & test \\ \hline \hline \multirow{3}{*}{\shortstack[l]{1/4 bilingual + \\4/4 monolingual}}&Ours&61.46&61.02&57.86&57.40&56.77&56.54&51.11& 51.58\\ & BT & 62.47 & 61.99 & 60.28 & 59.59 & 57.75 & 58.20 & 52.47 & 52.96 \\ & Ours+BT & \textbf{65.98} & \textbf{65.51} & \textbf{62.48} & \textbf{62.22} & \textbf{62.22} & \textbf{61.79} & \textbf{56.75} & \textbf{56.50} \\ \hline\hline \multirow{3}{*}{\shortstack[l]{2/4 bilingual + \\4/4 monolingual}}&Ours&65.17&64.69&61.31&61.01&61.43&61.19&55.55&55.35\\ & BT & 63.82 & 63.10 & 61.59 & 60.83 & 59.17 & 59.26 & 54.18 & 54.29 \\ & Ours+BT & \textbf{66.95} & \textbf{66.38} & \textbf{63.22} & \textbf{62.90} & \textbf{63.68} & \textbf{63.10} & \textbf{57.69} & \textbf{57.40} \\ \hline \end{tabular}
AI-35460
\begin{tabular}{c|l} \toprule[2pt] Notations & Explanations \\ \midrule[1pt] $\mathcal{U},\mathcal{I}, \mathcal{C}$ & User, item and category ID sets \\ $U, I, C$ & User, item and category embedding sets \\ $\mathcal{L}^u_{t-1}, \mathcal{S}^u_t, \mathcal{L}^u_t$ & Long-term, short-term and all sequential behaviors at time $t$ \\ $L^u_{t-1}, S^u_t$ & Long-term and short-term sequential behavior embeddings at time $t$ \\ $H^u_{t-1}$ & Time-aware history representation \\ $P^u$ & Personalized time position embedding for user $u$ \\ $W_*, b_*$ & Trainable weight matrix and bias vector \\ $L_s$ & Long-term sequence length \\ $d_f$ & Embedding size \\ $\gamma$ & Trainable parameter for adjusting the order of magnitude \\ $c^u_t$ & Dynamic user category ID at time $t$ \\ $u_{e,t}$ & User embedding at time $t$ for user $u$ \\ $u_{t-1}, u_{t}$ & User long-term and current preferences representation for user $u$ \\ $y_j$ & Label of item $j$ \\ $\lambda$ & L2-loss weight \\ \bottomrule[2pt] \end{tabular}
CR-30269
\begin{tabular}{|l|l|l|} \hline Type & Common Name & FSolidM Plugin \\ \hline\hline \multirow{2}{*}{Vulnerabilities} & reentrancy & locking \\ \cline{2-3} & transaction ordering & transition counter \\ \hline \multirow{2}{*}{Patterns} & time constraint & timed transitions \\ \cline{2-3} & authorization & access control \\ \hline \end{tabular}
SE-21684
\begin{tabular}{|l|c|c|c|} \hline \textbf{Method} & \textbf{Precision} & \textbf{Recall} & \textbf{F-Measure} \\ \hline No filter & 0.5160 & 0.5117 & 0.4883 \\ Removal & 0.5451 & 0.5414 & 0.5194 \\ Subtract & 0.5407 & 0.5371 & 0.5147 \\ Single & 0.5187 & 0.5148 & 0.4910 \\ GCF & 0.5172 & 0.5129 & 0.4889 \\ \hline \end{tabular}
AI-34516
\begin{tabular}{lll} $reach(d_1,g_1) \gets edge(d_1,g_1,1)$ & $reach(d_2,a_1) \gets edge(d_2,a_1,1)$ \\ $reach(d_2,a_2) \gets edge(d_2,a_2,1)$ & $reach(a_1,g_1) \gets edge(a_1,g_1,1)$ \\ $reach(a_1,g_2) \gets edge(a_1,g_2,1)$ & $reach(a_2,g_2) \gets edge(a_2,g_2,1)$ \\ \end{tabular}
AI-31553
\begin{tabular}{c|cccc|cccc} \toprule Model & $F_E$ & $F_A$ & $F_D$ & $G_P$ & SSIM$\uparrow$ & PSNR$\uparrow$ & FSIM$\uparrow$ & LPIPS$\downarrow$ \\ \hline "No $G_P$" & + & + & + & - & 0.5338 & 20.2712 & 0.7399 & 0.4482 \\ "Linear $F$" & * & - & - & + & 0.4585 & 18.8164 & 0.7006 & 0.4845 \\ "E Only" & * & - & - & + & 0.4761 & 19.0881 & 0.7146 & 0.4604 \\ "ED Only" & + & - & + & + & 0.5414 & 20.2488 & 0.7392 & 0.4340 \\ "A Only" & - & + & - & + & 0.5280 & 20.0312 & 0.7196 & 0.4418 \\ \hline "EA64" & + & + & - & + & \textbf{0.5954} & \textbf{21.2050} & 0.7586 & 0.4053 \\ "EAD" & + & + & + & + & 0.5848 & 21.1291 & \textbf{0.7592} & \textbf{0.3985} \\ \bottomrule \end{tabular}
SE-23212
\begin{tabular}{lll} Speaker & Search Function & Dialogue Act \\ \hline \multirow{10}{*}{User} & \multirow{2}{*}{Semantic Search} & \texttt{provideQuery} \\ & & \texttt{provideKeyword} \\ \cline{2-3} & \multirow{3}{*}{User Critique} & \texttt{rejectKeywords} \\ & & \texttt{rejectComponents} \\ & & \texttt{unsure} \\ \cline{2-3} & \multirow{5}{*}{Standard Navigation} & \texttt{elicitInfoAPI} \\ & & \texttt{elicitInfoAllAPI} \\ & & \texttt{elicitSuggAPI} \\ & & \texttt{elicitListResults} \\ & & \texttt{changePage} \\ \cline{2-3} & General & \texttt{END} \\ \hline \multirow{8}{*}{System} & \multirow{2}{*}{Query Refinement} & \texttt{requestQuery} \\ & & \texttt{suggKeywords} \\ \cline{2-3} & \multirow{2}{*}{API Recommendation} & \texttt{suggAPI} \\ & & \texttt{suggInfoAPI} \\ \cline{2-3} & \multirow{3}{*}{Standard Navigation} & \texttt{infoAPI} \\ & & \texttt{infoAllAPI} \\ & & \texttt{listResults} \\ & & \texttt{changePage} \\ \cline{2-3} & General & \texttt{START} \end{tabular}
SE-2352
\begin{tabular}{|m{8em}|m{14em}|} \hline \textbf{Category} & \textbf{Example Functions} \\ [0.5ex] \hline \#1 - Input & \verb_scanf_ and its family of functions, \verb_fread_, \verb_getc_, \verb_gets_ \\ \hline \#2 - Memory & \verb_memcpy_, \verb_memmove_, \verb_strcat_ and its family of functions \\ \hline \#3 - Output & \verb_printf_ family of functions, \verb_putc_ and related functions, other output functions defined in \verb_stdio.h_ \\ \hline \#4 - Utility & \verb_realpath_, \verb_getwd_, \verb_getopt_, and \verb_getpass_ \\ \hline \#5 - Buffer Access & Any type of buffer (array) read or write \\ \hline \end{tabular}
CV-11228
\begin{tabular}{lccc} \toprule[1.5pt] & mIoU(\ Baseline (RGB only) & 35.1 & 44.1 \\ Depth-aware conv & 38.1 & 48.0 \\ 3DN-Conv (this paper) & {\bf 39.2} & {\bf 50.8} \\ \bottomrule[1.5pt] \end{tabular}
CV-26942
\begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline \thead{} & \thead{head} & \thead{neck} & \thead{right \\shoulder} & \thead{right \\elbow} & \thead{right \\wrist} & \thead{left \\shoulder} & \thead{left \\elbow} & \thead{left \\wrist} \\ [0.5ex] \hline\hline \thead{Before \\fine-tuning} & 1.00 & 1.00 & 0.99 & 1.00 & 0.96 & 1.00 & 1.00 & 0.94\\ \thead{After \\fine-tuning} & 1.00 & 1.00 & 0.99 & 1.00 & 0.97 & 1.00 & 1.00 & 0.96\\ \hline \end{tabular}
CR-56514
\begin{tabular}{@{}lcccc@{}} Grid Search & 43.712 & 72.260 & \textbf{89.133} & 0.683 \\ Evolutionary & 5.250 & 72.615 & 73.745 & \textbf{0.175} \\ Bayesian & \textbf{2.853} & 73.385 & 81.562 & 0.349 \\ Reinforcement & 31.165 & \textbf{74.906} & 75.022 & 0.240 \\ \bottomrule \end{tabular}
CR-35361
\begin{tabular}{c|c|c|c|c|c|c} \specialrule{1pt}{0pt}{0pt} Scheme & Operation & $\tau$ & $U$ & $2 \tau U$ & $\mathrm{M}$ & $r$ \\ \hline\hline \multirow{4}{*}{Dilithium2} & $c\mathbf{s}_{1}$ & 39 & 2 & 156 & $2^{8}$ & 4 \\\cline{2-7} & $c\mathbf{s}_{2}$ & 39 & 2 & 156 & $2^{8}$ & 4 \\\cline{2-7} & $c\mathbf{t}_{0}$ & 39 & $2^{12}$ & 319488 & $2^{19}$ & 4 \\ \cline{2-7} & $c\mathbf{t}_{1}$ & 39 & $2^{10}$ & 79872 & $2^{17}$ & 4 \\ \hline \multirow{4}{*}{Dilithium3} & $c\mathbf{s}_{1}$ & 49 & 4 & 392 & $2^{9}$ & 5 \\\cline{2-7} & $c\mathbf{s}_{2}$ & 49 & 4 & 392 & $2^{9}$ & 6 \\\cline{2-7} & $c\mathbf{t}_{0}$ & 49 & $2^{12}$ & 401408 & $2^{19}$ & 6 \\\cline{2-7} & $c\mathbf{t}_{1}$ & 49 & $2^{10}$ & 100352 & $2^{17}$ & 6 \\\hline \multirow{4}{*}{Dilithium5} & $c\mathbf{s}_{1}$ & 60 & 2 & 240 & $2^{8}$ & 7 \\\cline{2-7} & $c\mathbf{s}_{2}$ & 60 & 2 & 240 & $2^{8}$ & 8 \\\cline{2-7} & $c\mathbf{t}_{0}$ & 60 & $2^{12}$ & 491520 & $2^{19}$ & 8 \\\cline{2-7} & $c\mathbf{t}_{1}$ & 60 & $2^{10}$ & 122880 & $2^{17}$ & 8 \\\specialrule{1pt}{0pt}{0pt} \end{tabular}
CR-45484
\begin{tabular}{ccc} \hline Algorithm & Time & Space \\ \hline CWC on plaintext & $O(kmn+k\log k)$ & $O(kmn)$ \\ secure CWC (baseline) & $O(kmn\log k+k\log^2 k)$ & $O(kmn)$ \\ improved & $O(kmn+k\log ^2k+k\log k\log mn)$ & $O(kmn)$\; \\ \hline \end{tabular}
SE-10691
\begin{tabular}[c]{@{}l@{}}Doingworkbeyondexpectationsandcompletingtasksbeforethedeadlines\\Keepontryingtoimprove,resultinginimprovingthequalityofthework\\Gettingdetailedrequirementsfromdifficulttohandlecustomers\\Committedtodoingthework,resultinginsuccessfulprojectcompletion\end{tabular}
AI-28367
\begin{tabular}{|l|l||c|c|c|c|c|c|} \hline \textbf{Data Set} & \textbf{Embedding Model} & \textbf{Book} & \textbf{Film} & \textbf{Actor} & \textbf{Company} & \textbf{University} & \textbf{Writer} \\ \hline \multirow{5}{*} {Wikipedia } & Skip-gram (avg) & 0.6 & 0.2 & 0.0 & 0.2 & 0.9 & 0.1 \\ & Skip-gram (sum) & 0.6 & 0.2 & 0.0 & 0.2 & 0.9 & 0.1 \\ & CBOW (avg) & 0.0 & 0.1 & 0.2 & 0.6 & 0.8 & 0.4 \\ & CBOW (sum) & 0.0 & 0.1 & 0.2 & 0.6 & 0.8 & 0.4 \\ & Glove (avg) & 0.3 & 0.8 & 0.5 & 0.7 & 0.6 & 0.4 \\ & Glove (sum) & 0.3 & 0.8 & 0.5 & 0.7 & 0.4 & 0.4 \\ \hline \multirow{2}{*} {DBpedia } & RDF2vec (skip-gram) & 0.4 & 0.1 & 0.4 & 0.3 & 0.1 & 0.3 \\ & RDF2vec (CBOW) & 0.2 & 0.0 & 0.4 & 0.4 & 0.1 & 0.5 \\ & RDF (Glove) & 0.2 & 0 & 0.1 & 0.2 & 0 & 0 \\ \hline \end{tabular}
SE-5199
\begin{tabular} { >{\centering\arraybackslash}m{1.4cm}| >{\centering\arraybackslash}m{2.8cm} | >{\centering\arraybackslash}m{2.8cm} | >{\centering\arraybackslash}m{0.6cm} | >{\centering\arraybackslash}m{1.85cm}| >{\centering\arraybackslash}m{0.6cm} | >{\centering\arraybackslash}m{0.6cm}} \toprule \textbf{Dataset} & \textbf{Ground Truth} & \textbf{Predicted Code} & \textbf{\textit{SC}} & \textbf{\textit{ROUGE-4 (F$_1$)}} & \textbf{\textit{ED}} & \textbf{\textit{EM}} \\ \midrule & \texttt{add EAX, EBX} & \texttt{add EAX, EBX} & $1.0$ & $0.0$ & $1.0$ & $1.0$ \\ \cmidrule{2-7} \textit{Assembly} & \texttt{xor ECX, ECX \textbackslash{n} mul ECX} & \texttt{xor ECX, ECX \textbackslash{n} mul \textcolor{red}{EBX}} & $0.0$ & $0.66$ & $0.95$ & $0.0$ \\ \cmidrule{2-7} & \texttt{jmp decode} & \texttt{jmp decode} & $1.0$ & $0.0$ & $1.0$ & $1.0$ \\ \bottomrule & \texttt{break} & \texttt{\textcolor{red}{sys.exit()}} & $0.0$ & $0.0$ & $0.1$ & $0.0$ \\ \cmidrule{2-7} \textit{Python} & \texttt{for byte in encoder:} & \texttt{for bytes in encoder:} & $1.0$ & $0.0$ & 0.95 & $0.0$ \\ \cmidrule{2-7} & \texttt{encoded = "\textbackslash \textbackslash x"} & \texttt{encoded = ‘\textbackslash \textbackslash x'} & $1.0$ & $0.0$ & $0.87$ & $0.0$ \\ \midrule \end{tabular}
CR-13081
\begin{tabular}{p{0.04\textwidth}p{0.52\textwidth}p{0.1\textwidth}p{0.15\textwidth}p{0.15\textwidth}} \toprule \textbf{\#} & \textbf{Company} & \textbf{Patent Count} & \textbf{Value} & \textbf{Impact} \\ \midrule 1 & International Business Machines Corporation & 7314 & 0.479355 & 3,488,180 \\ 2 & Microsoft Technology Licensing, LLC & 2644 & 0.815053 & 3,157,710 \\ 3 & Amazon Technologies, Inc. & 2133 & 0.487107 & 1,632,140 \\ 4 & Cisco Technology, Inc & 1040 & 0.779808 & 1,532,470 \\ 5 & Advanced New Technologies Co, Ltd & 518 & 0.486486 & 1,453,670 \\ 6 & Intel Corporation & 2788 & 0.457317 & 1,283,470 \\ 7 & EMC IP Holding Company LLC & 1235 & 0.733603 & 1,265,040 \\ 8 & Apple Inc. & 2568 & 0.54595 & 1,132,630 \\ 9 & AS America, Inc. & 496 & 0.59879 & 941,869 \\ 10 & Google LLC & 1621 & 0.676126 & 921,388 \\ \bottomrule \end{tabular}
CR-56609
\begin{tabular}{|c|c|c|c|c|} \hline Country & Total pop & 4/1 cases & 5/1 cases \\ \hline UK & 65.8m & 29.9k & 178.7k \\ \hline USA & 332.6m & 213.2k & 1.1m \\ \hline Europe & 741.m & 429k & 1.4m \\ \hline \end{tabular}
PL-2865
\begin{tabular}{ccclll} \hline BLEU-1 & BLEU-2 & BLEU-3 & BLEU-4 & ROUGE-L & METEOR \\ \hline 0.3472 & 0.0946 & 0.0608 & \multicolumn{1}{c}{0.0144} & \multicolumn{1}{c}{0.3784} & \multicolumn{1}{c}{0.0808} \\ \hline \end{tabular}
CR-39477
\begin{tabular}[c]{@{}l@{}}ThismoduleinstantiatesaperipheralwithinaSoCusingasignaltodistinguishbetweentrustedanduntrusted\\entities. However, this signal depicting the security level is incorrectly grounded.\end{tabular}
CR-14293
\begin{tabular}{ll} \toprule \textbf{Letter} & \multicolumn{1}{c}{\textbf{Observation}} \\ \midrule A & Assumes or learns properties of adversarial examples \\ B & Relies on the assumption that the attacker does not have full information \\ C & Relies on the assumption that the attacker cannot deal with randomness \\ D & Requires genuine data \\ E & Explicit role of loss \\ F & Implicit loss constraint (effect on loss or accuracy) \\ G & Provides an explicit accuracy-robustness trade-off \\ H & A non-trivial part of the computation is performed before the input is known \\ I & Problem statements are not directly comparable \\ J & Partially broken \\ K & Classifies \emph{sets} of inputs \\ L & Analysis is heavily influenced by what is defined to be the success condition \\ \bottomrule \end{tabular}
AI-34118
\begin{tabular}{l|l|p{7.5cm}} \bf type & \bf subtype & \bf tags \\ \hline \bf \em pass & cross, simple pass & accurate, not accurate, key pass, opportunity, assist, (goal) \\ \bf \em foul & & no card, yellow, red, 2nd yellow \\ \bf \em shot & & accurate, not accurate, block, opportunity, assist, (goal) \\ \bf \em duel & air duel, dribbles, tackles, ground loose ball & accurate, not accurate \\ \bf \em free kick & corner, shot, goal kick, throw in, penalty, simple kick \quad \ & accurate, not accurate, key pass, opportunity, assist, (goal) \\ \bf \em offside & & \\ \bf \em touch & acceleration, clearance, simple touch & counter attack, dangerous ball lost, missed ball, interception, opportunity, assist, (goal) \\ \hline \end{tabular}
CR-29235
\begin{tabular}{|c|c|c|c|c|c|} \hline \multicolumn{6}{|c|}{\textbf{Untimed CPN Model Statistics}} \\ \hline \textbf{Places} & \textbf{Count} & \textbf{Sum} & \textbf{Average} & \textbf{Min} & \textbf{Max} \\ \hline Inputs & 51 & 204 & 4.000000 & 4 & 4 \\ \hline Point Store & 51 & 834 & 16.352941 & 4 & 28 \\ \hline Provers' Distance Store & 51 & 696 & 13.647059 & 1 & 27 \\ \hline \end{tabular}
PL-3542
\begin{tabular}{lcc} \toprule Example & LC & FPLC \\ \midrule {\tt hypercube } & 100 & 1140 \\ {\tt coupon } & 27 & 184 \\ {\tt vertex-cover } & 30 & 61 \\ {\tt pairwise-indep } & 30 & 231 \\ {\tt private-sums } & 22 & 80 \\ {\tt poly-id-test } & 22 & 32 \\ {\tt random-walk } & 16 & 42 \\ {\tt dice-sampling } & 10 & 64 \\ {\tt matrix-prod-test} & 20 & 75 \\ \bottomrule \end{tabular}
CR-51044
\begin{tabular}{ccccc} \toprule \multirow{2}[4]{*}{\textbf{Method}} & \multicolumn{3}{c}{\textbf{Equivalent Transformation}} & \multicolumn{1}{c}{\multirow{2}[4]{*}{\textbf{Our Unified Attack}}} \\ \cmidrule{2-4} & \multicolumn{1}{c}{\textit{PathScale}} & \multicolumn{1}{c}{\textit{LayerShuffle}} & \multicolumn{1}{c}{\textit{SignFLip}} & \multicolumn{1}{c}{} \\ \midrule Uchida's & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \midrule RIGA & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \midrule Greedy Residuals & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \midrule IPR-GAN & \ding{55} & \ding{51} & \ding{51} & \ding{51} \\ \midrule Lottery Verification & \ding{55} & \ding{51} & \ding{55} & \ding{51} \\ \midrule DeepSigns & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \midrule IPR-IC & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \midrule DeepIPR & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \midrule Passport-aware & \ding{51} & \ding{51} & \ding{51} & \ding{51} \\ \bottomrule \end{tabular}
CV-26137
\begin{tabular}{|l|p{1.5cm}|p{1.8cm}|p{1.7cm}|p{1.7cm}|} \hline Classifier & Grasp Type (PIP) & Opposition Type & Grasped Dimension & Grasp Information(All) \\ \hline \hline Multi-class decision forest & 0.6460 & 0.6532 & 0.6508 & \bf{0.6966} \\ Multi-class neural network & 0.6810 & 0.6820 & 0.6474 & \bf{0.6929} \\ Locally deep SVM (Binary) & 0.6688 & 0.6908 & 0.6677 & \bf{0.6943} \\ SVMs (Binary) & 0.6789 & \bf{0.6912} & 0.6644 & 0.6854 \\ Neural network (Binary) & 0.6973 & 0.7041 & 0.6508 & \bf{0.7085} \\ \hline \end{tabular}
CV-27497
\begin{tabular}{|c|c|c|c|c|c|} \hline method & network & box encoding & train data & mAP & FPS \\ \hline\hline Faster RCNN & AlexNet & 2D center offset encoding & 07+12 & 62.1 & 18 \\ Faster RCNN & VGG16 & 2D center offset encoding & 07+12 & 73.2 & 7 \\ \hline YOLO & DarkNet & 2D center offset encoding & 07+12 & 63.4 & 45 \\ YOLO & VGG16 & 2D center offset encoding & 07+12 & 66.4 & 21 \\ \hline \end{tabular}
CV-28890
\begin{tabular}{lrrrrr} \toprule \multirow{2}{*}{Methods} & \multicolumn{2}{c}{Market-1501} & \multicolumn{2}{c}{MSMT17} \\ \cmidrule{2-5} & rank-1 & mAP & rank-1 & mAP \\ \midrule Feature Dropping Branch & 93.6 & 83.3 & - & - \\ Base+Random Erasing & 92.5 & 82.9 & 72.8 & 48.1 \\ Base+Grad-CAM Erasing & 94.1 & 84.7 & 74.6 & 49.4 \\ Base+Feature Dropping Branch & 93.7 & 83.2 & 73.1 & 47.0 \\ \midrule Base+BESM & 94.3 & 85.1 & 75.4 & 49.9 \\ ES-Net(Ours) & \textbf{95.7} & \textbf{88.6} & \textbf{80.5} & \textbf{57.3} \\ \bottomrule \end{tabular}
CV-26691
\begin{tabular}{c|cc}\hline & cifar10 & cifar100 \\ \hline ReLU & 0.927 & 0.653 \\ selu & 0.899 & 0.572 \\ ELU & 0.903 & 0.550 \\ softplus & 0.908 & 0.598 \\ Leaky ReLU & 0.918 & \underline{0.673} \\ SiL & 0.919 & 0.638 \\ PReLU & \underline{0.935} & \underline{0.678} \\ Swish & \underline{0.935} & \underline{0.689} \\ WiG (Pro.) & {\bf \underline{0.949} } & {\bf \underline{0.742} } \\ \hline \end{tabular}
AI-22967
\begin{tabular}{cc} \toprule \textbf{Dataset} & \textbf{SARIMAX(p,d,q)(P,D,Q,m)} \\ \midrule AEC-DS & (1,0,0)(1,0,0,7) \\ HPC-DS & (1,0,1)(1,1,1,7) \\ SHWI-DS & (1,0,0)(2,0,1,7) \\ \bottomrule \end{tabular}