File size: 5,020 Bytes
62030e0
 
 
81e7fbf
62030e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e7fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62030e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""utils.py: Helper Functions to keep this Repo Standalone"""

# System Imports
from math import sin, cos, radians, sqrt

__author__ = "Johannes Bayer"
__copyright__ = "Copyright 2023, DFKI"
__license__ = "CC"
__version__ = "0.0.1"
__email__ = "[email protected]"
__status__ = "Prototype"


def shift(p, q):
    """Shifts a Point by another point"""

    return [p[0]+q[0], p[1]+q[1]]


def rotate(p, angle):
    """Rotates a Point by an Angle"""

    return [p[0] * cos(angle) - p[1] * sin(angle),
            p[0] * sin(angle) + p[1] * cos(angle)]


def scale(p, scale_x, scale_y):
    """Scales a Point in two Dimensions"""

    return [p[0]*scale_x, p[1]*scale_y]


def transform(port, bb):
    """Transforms a Point from Unit Space (classes ports) to Global Bounding Box (image)"""

    p = shift(port['position'], (-.5, -0.5))  # Normalize: [0.0, 1.0]^2 -> [-0.5, 0-5]^2
    p = scale(p, 1.0, -1.0)                   # Flip
    p = rotate(p, -radians(bb['rotation']))
    p = scale(p, bb["xmax"] - bb["xmin"], bb["ymax"] - bb["ymin"])
    p = shift(p, [(bb["xmin"]+bb["xmax"])/2, (bb["ymin"]+bb["ymax"])/2])

    return {"name": port['name'], "position": p}


def bbdist(bb1, bb2):
    """Calculates the Distance between two Bounding Box Annotations"""

    return sqrt(((bb1["xmin"]+bb1["xmax"])/2 - (bb2["xmin"]+bb2["xmax"])/2)**2 +
                ((bb1["ymin"]+bb1["ymax"])/2 - (bb2["ymin"]+bb2["ymax"])/2)**2)


def overlap(bbox1, bbox2):

    if bbox1["xmin"] > bbox2["xmax"] or bbox1["xmax"] < bbox2["xmin"]:
        return False

    if bbox1["ymin"] > bbox2["ymax"] or bbox1["ymax"] < bbox2["ymin"]:
        return False

    return True


def associated_keypoints(instances, shape):
    """Returns the points with same group id as the provided polygon"""

    return [point for point in instances["points"]
            if point["group"] == shape["group"] and point["class"] == "connector"]


def IoU(bb1, bb2):
    """Intersection over Union"""

    intersection = 1
    union = 1

    return intersection/union


if __name__ == "__main__":

    import sys
    from loader import read_pascal_voc, write_pascal_voc
    import numpy as np
    import random

    if len(sys.argv) == 3:
        source = sys.argv[1]
        target = sys.argv[2]

        ann1, ann2 = [[bbox for bbox in read_pascal_voc(path)['bboxes'] if bbox['class'] == "text"]
                      for path in [source, target]]

        if not len(ann1) == len(ann2):

            print(f"Warning: Unequal Text Count ({len(ann1)} vs. {len(ann2)}), cropping..")
            consensus = min(len(ann1), len(ann2))
            ann1 = ann1[:consensus]
            ann2 = ann2[:consensus]

        x1 = np.array([(bbox['xmin']+bbox['xmax'])/2 for bbox in ann1])
        y1 = np.array([(bbox['ymin']+bbox['ymax'])/2 for bbox in ann1])
        x2 = np.array([(bbox['xmin']+bbox['xmax'])/2 for bbox in ann2])
        y2 = np.array([(bbox['ymin']+bbox['ymax'])/2 for bbox in ann2])
        x1 = ((x1-np.min(x1))/(np.max(x1)-np.min(x1))) * (np.max(x2)-np.min(x2)) + np.min(x2)
        y1 = ((y1-np.min(y1))/(np.max(y1)-np.min(y1))) * (np.max(y2)-np.min(y2)) + np.min(y2)
        dist = np.sqrt((x1-x2[np.newaxis].T)**2 + (y1-y2[np.newaxis].T)**2)
        indices_1 = np.arange(len(ann1))
        indices_2 = np.arange(len(ann2))
        print(np.sum(np.diagonal(dist)))

        for i in range(10000):
            if random.random() > 0.5:
                max_dist_pos = np.argmax(np.diagonal(dist))  # Mitigate Largest Cost

            else:
                max_dist_pos = random.randint(0, len(ann1)-1)

            if np.min(dist[max_dist_pos, :]) < np.min(dist[:, max_dist_pos]):
                min_dist_pos = np.argmin(dist[max_dist_pos, :])
                dist[:, [max_dist_pos, min_dist_pos]] = dist[:, [min_dist_pos, max_dist_pos]]  # Swap Columns
                indices_1[[max_dist_pos, min_dist_pos]] = indices_1[[min_dist_pos, max_dist_pos]]

            else:
                min_dist_pos = np.argmin(dist[:, max_dist_pos])
                dist[[max_dist_pos, min_dist_pos], :] = dist[[min_dist_pos, max_dist_pos], :]  # Swap Rows
                indices_2[[max_dist_pos, min_dist_pos]] = indices_2[[min_dist_pos, max_dist_pos]]

        print(np.sum(np.diagonal(dist)))

        wb = read_pascal_voc(target)

        for i in range(len(ann1)):
            ann2[indices_2[i]]['text'] = ann1[indices_1[i]]['text']
            bbox_match = [bbox for bbox in wb['bboxes']
                          if bbox['xmin'] == ann2[indices_2[i]]['xmin'] and
                             bbox['xmax'] == ann2[indices_2[i]]['xmax'] and
                             bbox['ymin'] == ann2[indices_2[i]]['ymin'] and
                             bbox['ymax'] == ann2[indices_2[i]]['ymax']]

            if len(bbox_match) == 1:
                bbox_match[0]['text'] = ann1[indices_1[i]]['text']
                bbox_match[0]['rotation'] = ann1[indices_1[i]]['rotation']

        write_pascal_voc(wb)

    else:
        print("Args: source target")