Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Chinese
Size:
10K<n<100K
ArXiv:
Tags:
question-generation
License:
""" Script to process raw SQuAD file for Question Generation format | |
You need to run `python -m spacy download zh_core_web_sm`. | |
Split when uploading to dataset hub by | |
``` | |
gsplit -l 3300 -d --additional-suffix=.jsonl train.jsonl train | |
gsplit -l 3300 -d --additional-suffix=.jsonl test.jsonl test | |
gsplit -l 3300 -d --additional-suffix=.jsonl dev.jsonl dev | |
``` | |
""" | |
import json | |
import os | |
import re | |
from glob import glob | |
from tqdm import tqdm | |
from typing import List, Dict | |
import spacy | |
SPLITTER = spacy.load('zh_core_web_sm') | |
HIGHLIGHT_TOKEN = '<hl>' | |
def get_sentence(document: str): | |
return [str(s) for s in SPLITTER(document).sents] | |
def jsonline_reader(filename: str): | |
with open(filename, 'r') as f_reader: | |
examples = [json.loads(i) for i in f_reader.read().split('\n') if len(i) > 0] | |
return examples | |
def process_single_data(data: Dict): | |
""" Convert single raw json data into QG format """ | |
example = {'question': data["question"], 'paragraph': data["context"], 'answer': data["answer"]} | |
# get sentence | |
position = example['paragraph'].find(example['answer']) | |
assert position != -1 | |
before_tmp = get_sentence(example['paragraph'][:position]) | |
if len(before_tmp) == 0: | |
before = '' | |
before_sentence = '' | |
else: | |
if before_tmp[-1].endswith('.'): | |
before = ' '.join(before_tmp) | |
before_sentence = '' | |
else: | |
before = ' '.join(before_tmp[:-1]) | |
before_sentence = before_tmp[-1] | |
before_sentence = before_sentence if before_sentence.endswith(' ') else '{} '.format(before_sentence) | |
after_tmp = get_sentence(example['paragraph'][position + len(example['answer']):]) | |
if len(after_tmp) == 0: | |
after = '' | |
after_sentence = '' | |
else: | |
after = ' '.join(after_tmp[1:]) | |
after_sentence = after_tmp[0] | |
after_sentence = after_sentence if after_sentence.startswith(' ') else ' {}'.format(after_sentence) | |
example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence) | |
# get paragraph_sentence | |
before = '' if before == '' else '{} '.format(before) | |
after = '' if after == '' else ' {}'.format(after) | |
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) | |
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text) | |
# get paragraph_answer | |
source_text = '{0}{1} {2} {1}{3}'.format( | |
example['paragraph'][:position], HIGHLIGHT_TOKEN, example['answer'], | |
example['paragraph'][position + len(example['answer']):]) | |
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text) | |
# example['paragraph_question'] = f"question: {example['question']}, context: {example['paragraph']}" | |
# get sentence_answer | |
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'): | |
before = '' | |
else: | |
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else '{} '.format(before_tmp[-1]) | |
if len(after_tmp) == 0: | |
after = '' | |
else: | |
after = after_tmp[0] if after_tmp[0].startswith(' ') else ' {}'.format(after_tmp[0]) | |
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) | |
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) | |
return example | |
if __name__ == '__main__': | |
output = './data/processed' | |
os.makedirs(output, exist_ok=True) | |
path = {'train': 'data/raw.train.jsonl', 'validation': 'data/raw.valid.jsonl', 'test': 'data/raw.test.jsonl'} | |
for k, v in path.items(): | |
json_data = [] | |
for _file in sorted(glob(v)): | |
json_data += jsonline_reader(_file) | |
with open('{}/{}.jsonl'.format(output, k), 'w') as f: | |
for single_data in tqdm(json_data): | |
single_data = process_single_data(single_data) | |
f.write(json.dumps(single_data) + '\n') | |