Datasets:
lmqg
/

Languages:
Russian
ArXiv:
License:
File size: 4,894 Bytes
be43b46
db7a33b
be43b46
6278f6a
be43b46
 
 
d5af190
 
 
 
 
 
be43b46
 
2b27c2f
be43b46
 
 
 
4147f7b
be43b46
 
 
2b27c2f
4147f7b
2b27c2f
be43b46
 
 
 
2b27c2f
 
be43b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b27c2f
be43b46
2b27c2f
 
 
be43b46
2b27c2f
 
 
 
 
e1131cb
2b27c2f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: cc-by-4.0
pretty_name: SberQuAD for question generation
language: ru
multilinguality: monolingual
size_categories: 10K<n<100K
source_datasets: deepset/germanquad
task_categories:
- text-generation
task_ids:
- language-modeling
tags:
- question-generation
---

# Dataset Card for "lmqg/qg_ruquad"


## Dataset Description
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
- **Point of Contact:** [Asahi Ushio](http://asahiushio.com/)

### Dataset Summary
This is a subset of [QG-Bench](https://github.com/asahi417/lm-question-generation/blob/master/QG_BENCH.md#datasets), a unified question generation benchmark proposed in
 ["Generative Language Models for Paragraph-Level Question Generation: A Unified Benchmark and Evaluation, EMNLP 2022 main conference"](https://arxiv.org/abs/2210.03992).
This is a modified version of [SberQuaD](https://huggingface.co/datasets/sberquad) for question generation (QG) task.
Since the original dataset only contains training/validation set, we manually sample test set from training set, which
has no overlap in terms of the paragraph with the training set.

### Supported Tasks and Leaderboards
* `question-generation`: The dataset is assumed to be used to train a model for question generation.
  Success on this task is typically measured by achieving a high BLEU4/METEOR/ROUGE-L/BERTScore/MoverScore (see our paper for more in detail).

### Languages
Russian (ru)

## Dataset Structure
An example of 'train' looks as follows.
```
{
  'answer': 'известковыми выделениями сине-зелёных водорослей',                                                                                                                                                                   
  'question': 'чем представлены органические остатки?',  
  'sentence': 'Они представлены известковыми выделениями сине-зелёных водорослей , ходами червей, остатками кишечнополостных.'
  'paragraph': "В протерозойских отложениях органические остатки встречаются намного чаще, чем в архейских. Они представлены..."
  'sentence_answer': "Они представлены <hl> известковыми выделениями сине-зелёных водорослей <hl> , ход...",   
  'paragraph_answer': "В протерозойских отложениях органические остатки встречаются намного чаще, чем в архейских. Они представлены <hl> известковыми выделениям...",
  'paragraph_sentence': "В протерозойских отложениях органические остатки встречаются намного чаще, чем в архейских. <hl> Они представлены известковыми выделениями сине-зелёных водорослей , ходами червей, остатками кишечнополостных. <hl> Кроме..."  
}
```
The data fields are the same among all splits.
- `question`: a `string` feature. 
- `paragraph`: a `string` feature.
- `answer`: a `string` feature.
- `sentence`: a `string` feature.
- `paragraph_answer`: a `string` feature, which is same as the paragraph but the answer is highlighted by a special token `<hl>`.
- `paragraph_sentence`: a `string` feature, which is same as the paragraph but a sentence containing the answer is highlighted by a special token `<hl>`.
- `sentence_answer`: a `string` feature, which is same as the sentence but the answer is highlighted by a special token `<hl>`.

Each of `paragraph_answer`, `paragraph_sentence`, and `sentence_answer` feature is assumed to be used to train a question generation model,
but with different information. The `paragraph_answer` and `sentence_answer` features are for answer-aware question generation and 
`paragraph_sentence` feature is for sentence-aware question generation.

## Data Splits

|train|validation|test |
|----:|---------:|----:|
| 45327 |   5036    |23936  |


## Citation Information

```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
```