Datasets:
lmqg
/

Modalities:
Text
Languages:
Japanese
ArXiv:
Libraries:
Datasets
License:
File size: 3,888 Bytes
0444c95
bf351d9
 
 
0444c95
bf351d9
 
 
0444c95
 
 
 
 
bf351d9
0444c95
 
 
 
 
 
 
 
 
 
 
 
 
a1681d2
0444c95
 
 
 
 
a1681d2
0444c95
 
 
a1681d2
0444c95
a1681d2
0444c95
 
 
 
 
 
 
 
 
 
a1681d2
0444c95
 
 
 
 
 
 
 
a1681d2
0444c95
a1681d2
0444c95
a1681d2
0444c95
a1681d2
 
 
0444c95
 
a1681d2
0444c95
 
a1681d2
 
0444c95
 
a1681d2
0444c95
 
 
 
 
 
 
 
 
 
 
bf351d9
 
 
 
 
 
0444c95
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
""" Script to process raw SQuAD file for Question Generation format
cd data/processed
gsplit -l 500 -d --additional-suffix=.jsonl train.jsonl train
gsplit -l 500 -d --additional-suffix=.jsonl test.jsonl test
gsplit -l 1000 -d --additional-suffix=.jsonl validation.jsonl validation
rm -rf test.jsonl
rm -rf train.jsonl
rm -rf validation.jsonl
"""
import json
import os
import re
from tqdm import tqdm
from typing import Dict
from datasets import load_dataset
from ja_sentence_split import JASplitter

HIGHLIGHT_TOKEN = '<hl>'
SPLITTER = JASplitter()


def get_sentence(document: str):
    return [str(s) for s in SPLITTER(document)]


def process_single_data(data: Dict):
    """ Convert single raw json data into QG format """
    example = {'question': data["question"], 'paragraph': data["context"]}

    # check answer
    answer_text = data['answers']['text'][0]
    answer_start = data['answers']['answer_start'][0]
    answer_end = answer_start + len(answer_text)
    assert example['paragraph'][answer_start: answer_end] == answer_text
    example['answer'] = answer_text

    # get sentence
    position = example['paragraph'].find(example['answer'])
    assert position != -1
    before_tmp = get_sentence(example['paragraph'][:position])
    if len(before_tmp) == 0:
        before = ''
        before_sentence = ''
    else:
        if before_tmp[-1].endswith('。'):
            before = ' '.join(before_tmp)
            before_sentence = ''
        else:
            before = ' '.join(before_tmp[:-1])
            before_sentence = before_tmp[-1]
    after_tmp = get_sentence(example['paragraph'][position + len(example['answer']):])
    if len(after_tmp) == 0:
        after = ''
        after_sentence = ''
    else:
        after = ' '.join(after_tmp[1:])
        after_sentence = after_tmp[0]
    example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence)

    # get paragraph_sentence
    source_text = '{0}{1}{2}{1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after)
    example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text)

    # get paragraph_answer
    source_text = '{0}{1}{2}{1}{3}'.format(
        example['paragraph'][:position], HIGHLIGHT_TOKEN, example['answer'],
        example['paragraph'][position + len(example['answer']):])
    example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text)

    # get sentence_answer
    if len(before_tmp) == 0 or before_tmp[-1].endswith('。'):
        before = ''
    else:
        before = before_tmp[-1]
    if len(after_tmp) == 0:
        after = ''
    else:
        after = after_tmp[0]
    source_text = '{0}{1}{2}{1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after)
    example['sentence_answer'] = re.sub(r'\s+', ' ', source_text)
    for _k in example.keys():
        example[_k] = example[_k].replace('。\n\n', '。').replace('。\n', '。')
    return example


if __name__ == '__main__':
    jaquad_data = load_dataset("SkelterLabsInc/JaQuAD")
    data_dev = jaquad_data['validation']

    # create test set from training
    data_train = jaquad_data['train']
    context = sorted(list(set(data_train['context'])))
    data_test = [data_train[i] for i in range(len(data_train)) if data_train[i]['context'] in context[:927]]
    data_train = [data_train[i] for i in range(len(data_train)) if data_train[i]['context'] in context[927:]]
    print(f'train ({len(data_train)}, test ({len(data_test)}), dev ({len(data_dev)})')
    data_all = {'train': data_train, 'validation': data_dev, 'test': data_test}
    output = './data/processed'
    os.makedirs(output, exist_ok=True)
    for k, _data in data_all.items():
        with open('{}/{}.jsonl'.format(output, k), 'w') as f:
            for single_data in tqdm(_data):
                single_data = process_single_data(single_data)
                f.write(json.dumps(single_data) + '\n')