Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
Japanese
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
File size: 3,888 Bytes
0444c95 bf351d9 0444c95 bf351d9 0444c95 bf351d9 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 a1681d2 0444c95 bf351d9 0444c95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
""" Script to process raw SQuAD file for Question Generation format
cd data/processed
gsplit -l 500 -d --additional-suffix=.jsonl train.jsonl train
gsplit -l 500 -d --additional-suffix=.jsonl test.jsonl test
gsplit -l 1000 -d --additional-suffix=.jsonl validation.jsonl validation
rm -rf test.jsonl
rm -rf train.jsonl
rm -rf validation.jsonl
"""
import json
import os
import re
from tqdm import tqdm
from typing import Dict
from datasets import load_dataset
from ja_sentence_split import JASplitter
HIGHLIGHT_TOKEN = '<hl>'
SPLITTER = JASplitter()
def get_sentence(document: str):
return [str(s) for s in SPLITTER(document)]
def process_single_data(data: Dict):
""" Convert single raw json data into QG format """
example = {'question': data["question"], 'paragraph': data["context"]}
# check answer
answer_text = data['answers']['text'][0]
answer_start = data['answers']['answer_start'][0]
answer_end = answer_start + len(answer_text)
assert example['paragraph'][answer_start: answer_end] == answer_text
example['answer'] = answer_text
# get sentence
position = example['paragraph'].find(example['answer'])
assert position != -1
before_tmp = get_sentence(example['paragraph'][:position])
if len(before_tmp) == 0:
before = ''
before_sentence = ''
else:
if before_tmp[-1].endswith('γ'):
before = ' '.join(before_tmp)
before_sentence = ''
else:
before = ' '.join(before_tmp[:-1])
before_sentence = before_tmp[-1]
after_tmp = get_sentence(example['paragraph'][position + len(example['answer']):])
if len(after_tmp) == 0:
after = ''
after_sentence = ''
else:
after = ' '.join(after_tmp[1:])
after_sentence = after_tmp[0]
example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence)
# get paragraph_sentence
source_text = '{0}{1}{2}{1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after)
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text)
# get paragraph_answer
source_text = '{0}{1}{2}{1}{3}'.format(
example['paragraph'][:position], HIGHLIGHT_TOKEN, example['answer'],
example['paragraph'][position + len(example['answer']):])
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text)
# get sentence_answer
if len(before_tmp) == 0 or before_tmp[-1].endswith('γ'):
before = ''
else:
before = before_tmp[-1]
if len(after_tmp) == 0:
after = ''
else:
after = after_tmp[0]
source_text = '{0}{1}{2}{1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after)
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text)
for _k in example.keys():
example[_k] = example[_k].replace('γ\n\n', 'γ').replace('γ\n', 'γ')
return example
if __name__ == '__main__':
jaquad_data = load_dataset("SkelterLabsInc/JaQuAD")
data_dev = jaquad_data['validation']
# create test set from training
data_train = jaquad_data['train']
context = sorted(list(set(data_train['context'])))
data_test = [data_train[i] for i in range(len(data_train)) if data_train[i]['context'] in context[:927]]
data_train = [data_train[i] for i in range(len(data_train)) if data_train[i]['context'] in context[927:]]
print(f'train ({len(data_train)}, test ({len(data_test)}), dev ({len(data_dev)})')
data_all = {'train': data_train, 'validation': data_dev, 'test': data_test}
output = './data/processed'
os.makedirs(output, exist_ok=True)
for k, _data in data_all.items():
with open('{}/{}.jsonl'.format(output, k), 'w') as f:
for single_data in tqdm(_data):
single_data = process_single_data(single_data)
f.write(json.dumps(single_data) + '\n')
|