Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
File size: 2,401 Bytes
b210d0f
 
28667eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b210d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60e86f
 
 
 
 
b210d0f
28667eb
 
 
 
b210d0f
 
 
 
f60e86f
 
b210d0f
78601bc
 
 
b210d0f
78601bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
dataset_info:
- config_name: chinese_culture
  features:
  - name: index
    dtype: int32
  - name: question
    dtype: string
  - name: image
    dtype: image
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: answer
    dtype: string
  - name: category
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: test
    num_bytes: 55546140.0
    num_examples: 2176
  download_size: 54795762
  dataset_size: 55546140.0
- config_name: default
  features:
  - name: index
    dtype: int32
  - name: question
    dtype: string
  - name: image
    dtype: image
  - name: hint
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: answer
    dtype: string
  - name: category
    dtype: string
  - name: source
    dtype: string
  - name: L2-category
    dtype: string
  - name: comment
    dtype: string
  - name: split
    dtype: string
  splits:
  - name: dev
    num_bytes: 102763038.0
    num_examples: 4329
  - name: test
    num_bytes: 148195795.0
    num_examples: 6666
  download_size: 238168349
  dataset_size: 250958833.0
configs:
- config_name: chinese_culture
  data_files:
  - split: test
    path: chinese_culture/test-*
- config_name: default
  data_files:
  - split: dev
    path: data/dev-*
  - split: test
    path: data/test-*
---
<p align="center" width="100%">
<img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png"  width="100%" height="80%">
</p>

# Large-scale Multi-modality Models Evaluation Suite

> Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval`

🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab)

# This Dataset

This is a formatted version of the Chinese subset of [MMBench](https://arxiv.org/abs/2307.06281). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models.

```
@article{MMBench,
    author  = {Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, Dahua Lin},
    journal = {arXiv:2307.06281},
    title   = {MMBench: Is Your Multi-modal Model an All-around Player?},
    year    = {2023},
}
```