File size: 1,823 Bytes
b78abe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f74766
 
 
 
 
b78abe7
 
 
 
 
1f74766
 
b78abe7
 
94f9ba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
  features:
  - name: question_id
    dtype: string
  - name: question
    dtype: string
  - name: choices
    dtype: string
  - name: answer
    dtype: string
  - name: query_image
    dtype: image
  - name: choice_image_0
    dtype: image
  - name: choice_image_1
    dtype: image
  - name: ques_type
    dtype: string
  - name: label
    dtype: string
  - name: grade
    dtype: string
  - name: skills
    dtype: string
  splits:
  - name: val
    num_bytes: 329185883.464
    num_examples: 21488
  - name: test
    num_bytes: 333201645.625
    num_examples: 21489
  download_size: 667286379
  dataset_size: 662387529.089
configs:
- config_name: default
  data_files:
  - split: val
    path: data/val-*
  - split: test
    path: data/test-*
---


<p align="center" width="100%">
<img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png"  width="100%" height="80%">
</p>

# Large-scale Multi-modality Models Evaluation Suite

> Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval`

๐Ÿ  [Homepage](https://lmms-lab.github.io/) | ๐Ÿ“š [Documentation](docs/README.md) | ๐Ÿค— [Huggingface Datasets](https://huggingface.co/lmms-lab)

# This Dataset

This is a formatted version of [ICONQA](https://iconqa.github.io/). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models.

```
@inproceedings{lu2021iconqa,
    title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning},
    author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun},
    booktitle = {The 35th Conference on Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks},
    year = {2021}
}
```