Datasets:

Modalities:
Text
Languages:
Japanese
Libraries:
Datasets
wrime-sentiment / wrime-sentiment.py
ryo0634's picture
Update wrime-sentiment.py
fb9b134
import csv
from dataclasses import dataclass
from typing import Any, Dict, List, Tuple
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = (
"日本語の感情分析データセット WRIME を、ポジティブ/ネガティブの二値分類のタスクに加工したデータセットです。"
"GitHub リポジトリ ids-cv/wrime で公開されているデータセットを利用しています。"
)
_URL = "https://raw.githubusercontent.com/ids-cv/wrime/master/wrime-ver2.tsv"
@dataclass
class WrimeSentimentConfig(datasets.BuilderConfig):
remove_neutral: bool = True
class WrimeSentiment(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = WrimeSentimentConfig
def _info(self) -> datasets.DatasetInfo:
labels = ["positive", "negative"]
if not self.config.remove_neutral:
labels += ["neutral"]
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence": datasets.Value("string"),
"label": datasets.ClassLabel(
num_classes=len(labels), names=labels
),
"user_id": datasets.Value("int64"),
"datetime": datasets.Value("string")
}
),
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
downloaded_file = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_file,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_file,
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_file,
"split": "test",
},
),
]
def _generate_examples(
self, filepath: str, split: str
) -> Tuple[str, Dict[str, Any]]:
logger.info(f"generating examples from {filepath}")
_key = 0
with open(filepath, "r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for data in reader:
if data["Train/Dev/Test"].lower() != split:
continue
sentiment_score = int(data["Avg. Readers_Sentiment"])
if sentiment_score > 0:
label = "positive"
elif sentiment_score < 0:
label = "negative"
else:
label = "neutral"
if self.config.remove_neutral and label == "neutral":
continue
yield _key, {
"sentence": data["Sentence"],
"label": label,
"user_id": data["UserID"],
"datetime": data["Datetime"].strip(),
}
_key += 1