Datasets:
File size: 5,730 Bytes
af00a85 89aa6e4 af00a85 89aa6e4 af00a85 e4167ee af00a85 89aa6e4 af00a85 3c43423 84faedf 3c43423 ae91c9d 84faedf 3c43423 ae91c9d 3c43423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- image-to-text
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 392473380.05
num_examples: 76318
download_size: 383401054
dataset_size: 392473380.05
- config_name: full
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 385291867
num_examples: 76318
- name: validation
num_bytes: 43364061.55
num_examples: 8475
- name: test
num_bytes: 47643036.303
num_examples: 9443
download_size: 473618552
dataset_size: 483485587.878
- config_name: human_handwrite
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 16181778
num_examples: 1200
- name: validation
num_bytes: 962283
num_examples: 68
- name: test
num_bytes: 906906
num_examples: 70
download_size: 18056029
dataset_size: 18050967
- config_name: human_handwrite_print
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 3152122.8
num_examples: 1200
- name: validation
num_bytes: 182615
num_examples: 68
- name: test
num_bytes: 181698
num_examples: 70
download_size: 1336052
dataset_size: 3516435.8
- config_name: small
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 261296
num_examples: 50
- name: validation
num_bytes: 156489
num_examples: 30
- name: test
num_bytes: 156489
num_examples: 30
download_size: 588907
dataset_size: 574274
- config_name: synthetic_handwrite
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 496610333.066
num_examples: 76266
- name: validation
num_bytes: 63147351.515
num_examples: 9565
- name: test
num_bytes: 62893132.805
num_examples: 9593
download_size: 616418996
dataset_size: 622650817.3859999
configs:
- config_name: default
data_files:
- split: train
path: full/train-*
- config_name: full
data_files:
- split: train
path: full/train-*
- split: validation
path: full/validation-*
- split: test
path: full/test-*
- config_name: human_handwrite
data_files:
- split: train
path: human_handwrite/train-*
- split: validation
path: human_handwrite/validation-*
- split: test
path: human_handwrite/test-*
- config_name: human_handwrite_print
data_files:
- split: train
path: human_handwrite_print/train-*
- split: validation
path: human_handwrite_print/validation-*
- split: test
path: human_handwrite_print/test-*
- config_name: small
data_files:
- split: train
path: small/train-*
- split: validation
path: small/validation-*
- split: test
path: small/test-*
- config_name: synthetic_handwrite
data_files:
- split: train
path: synthetic_handwrite/train-*
- split: validation
path: synthetic_handwrite/validation-*
- split: test
path: synthetic_handwrite/test-*
tags:
- code
---
# LaTeX OCR 的数据仓库
本数据仓库是专为 [LaTeX_OCR](https://github.com/LinXueyuanStdio/LaTeX_OCR) 及 [LaTeX_OCR_PRO](https://github.com/LinXueyuanStdio/LaTeX_OCR) 制作的数据,来源于 `https://zenodo.org/record/56198#.V2p0KTXT6eA` 以及 `https://www.isical.ac.in/~crohme/` 以及我们自己构建。
如果这个数据仓库有帮助到你的话,请点亮 ❤️like ++
后续追加新的数据也会放在这个仓库 ~~
> 原始数据仓库在github [LinXueyuanStdio/Data-for-LaTeX_OCR](https://github.com/LinXueyuanStdio/Data-for-LaTeX_OCR).
## 数据集
本仓库有 5 个数据集
1. `small` 是小数据集,样本数 110 条,用于测试
2. `full` 是印刷体约 100k 的完整数据集。实际上样本数略小于 100k,因为用 LaTeX 的抽象语法树剔除了很多不能渲染的 LaTeX。
3. `synthetic_handwrite` 是手写体 100k 的完整数据集,基于 `full` 的公式,使用手写字体合成而来,可以视为人类在纸上的手写体。样本数实际上略小于 100k,理由同上。
4. `human_handwrite` 是手写体较小数据集,更符合人类在电子屏上的手写体。主要来源于 `CROHME`。我们用 LaTeX 的抽象语法树校验过了。
5. `human_handwrite_print` 是来自 `human_handwrite` 的印刷体数据集,公式部分和 `human_handwrite` 相同,图片部分由公式用 LaTeX 渲染而来。
## 使用
加载训练集
- name 可选 small, full, synthetic_handwrite, human_handwrite, human_handwrite_print
- split 可选 train, validation, test
```python
>>> from datasets import load_dataset
>>> train_dataset = load_dataset("linxy/LaTeX_OCR", name="small", split="train")
>>> train_dataset[2]["text"]
\rho _ { L } ( q ) = \sum _ { m = 1 } ^ { L } \ P _ { L } ( m ) \ { \frac { 1 } { q ^ { m - 1 } } } .
>>> train_dataset[2]
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=200x50 at 0x15A5D6CE210>,
'text': '\\rho _ { L } ( q ) = \\sum _ { m = 1 } ^ { L } \\ P _ { L } ( m ) \\ { \\frac { 1 } { q ^ { m - 1 } } } .'}
>>> len(train_dataset)
50
```
加载所有
```python
>>> from datasets import load_dataset
>>> dataset = load_dataset("linxy/LaTeX_OCR", name="small")
>>> dataset
DatasetDict({
train: Dataset({
features: ['image', 'text'],
num_rows: 50
})
validation: Dataset({
features: ['image', 'text'],
num_rows: 30
})
test: Dataset({
features: ['image', 'text'],
num_rows: 30
})
})
```
|