File size: 3,772 Bytes
4bb16b2
 
 
 
 
 
 
 
 
 
 
 
 
 
0b26238
4bb16b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b26238
4bb16b2
 
 
 
 
0b26238
 
 
 
 
4bb16b2
 
 
0b26238
4bb16b2
 
 
0b26238
4bb16b2
 
 
0b26238
4bb16b2
 
0b26238
 
4bb16b2
0b26238
 
4bb16b2
 
0b26238
 
 
 
 
 
 
 
 
 
 
4bb16b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b26238
4bb16b2
 
 
 
 
 
 
 
 
 
 
0b26238
4bb16b2
 
0b26238
4bb16b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Stanzas"""
import csv

import datasets


_CITATION = """
@InProceedings{--,
  author = {---},
  title = {---},
  booktitle = {---},
  year = 2021,
  address = "---"
}
"""

_DESCRIPTION = """\
Stanzas
"""


_HOMEPAGE = "https://github.com/versae/bibles/"

STANZAS_BASE_URI = "https://huggingface.co/datasets/linhd-postdata/stanzas/resolve/main"
STANZAS = {
    "validation": f"{STANZAS_BASE_URI}/eval.csv",
    "test": f"{STANZAS_BASE_URI}/test.csv",
    "train": f"{STANZAS_BASE_URI}/train.csv"
}


class StanzasConfig(datasets.BuilderConfig):
    """BuilderConfig for NorNE."""

    def __init__(self, **kwargs):
        """BuilderConfig for Stanzas.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(StanzasConfig, self).__init__(**kwargs)


class Stanzas(datasets.GeneratorBasedBuilder):
    """Stanzas"""

    StanzasConfig(
        name="default",version=datasets.Version("1.0.0"), description="Stanzas")

    def _info(self):
        labels = ['ovillejo', 'romance', 'octava_real', 'couplet', 'octava',
       'cuarteta', 'copla_real', 'serventesio', 'haiku', 'cuaderna_vía',
       'tercetillo', 'cantar', 'sextilla', 'espinela', 'lira',
       'octavilla', 'chamberga', 'endecha_real', 'romance_arte_mayor',
       'redondilla', 'septilla', 'silva_arromanzada', 'seguidilla',
       'cuarteto_lira', 'cuarteto', 'décima_antigua', 'seguidilla_gitana',
       'seguidilla_compuesta', 'copla_castellana', 'quintilla', 'soleá',
       'estrofa_manriqueña', 'quinteto', 'terceto', 'sexta_rima',
       'unknown', 'estrofa_sáfica', 'estrofa_francisco_de_la_torre',
       'novena', 'sexteto', 'copla_arte_menor', 'copla_arte_mayor',
       'terceto_monorrimo', 'copla_mixta', 'septeto', 'sexteto_lira']
        self.labels = labels
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=labels),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        URLS = {key: STANZAS[key] for key in STANZAS.keys()}
        downloaded_files = dl_manager.download(URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=",")
            next(csv_reader)  # skip header
            for idx, (text, label) in enumerate(csv_reader):
                yield int(idx), {
                    "text": text,
                    "label": label,
                }