NohTow commited on
Commit
9e444a4
·
verified ·
1 Parent(s): 27ee4fb

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - fr
5
+ multilinguality:
6
+ - multilingual
7
+ size_categories:
8
+ - 100K<n<1M
9
+ task_categories:
10
+ - feature-extraction
11
+ - sentence-similarity
12
+ pretty_name: ms-marco-fr-bge
13
+ tags:
14
+ - sentence-transformers
15
+ - colbert
16
+ - lightonai
17
+ dataset_info:
18
+ - config_name: queries
19
+ features:
20
+ - name: query_id
21
+ dtype: string
22
+ - name: text
23
+ dtype: string
24
+ splits:
25
+ - name: train
26
+ num_examples: 808731
27
+ - config_name: documents
28
+ features:
29
+ - name: document_id
30
+ dtype: string
31
+ - name: text
32
+ dtype: string
33
+ splits:
34
+ - name: train
35
+ num_examples: 8829492
36
+ - config_name: train
37
+ features:
38
+ - name: query_id
39
+ dtype: string
40
+ - name: document_ids
41
+ sequence:
42
+ value:
43
+ dtype: string
44
+ - name: scores
45
+ sequence:
46
+ value:
47
+ dtype: float16
48
+ splits:
49
+ - name: train
50
+ num_examples: 808000
51
+ configs:
52
+ - config_name: queries
53
+ data_files:
54
+ - split: train
55
+ path: french_queries.train.parquet
56
+ - config_name: documents
57
+ data_files:
58
+ - split: train
59
+ path: french_collection.parquet
60
+ - config_name: train
61
+ data_files:
62
+ - split: train
63
+ path: dataset.parquet
64
+ ---
65
+
66
+ # ms-marco-fr-bge
67
+
68
+ This dataset contains the [french version](https://huggingface.co/datasets/unicamp-dl/mmarco) of [MS MARCO](https://microsoft.github.io/msmarco/) dataset with documents similar to the query mined using [BGE-M3](https://huggingface.co/BAAI/bge-m3) and then scored by [bge-reranker-v2-m3](BAAI/bge-reranker-v2-m3). It can be used to train a retrieval model using knowledge distillation.
69
+
70
+ #### `knowledge distillation`
71
+
72
+ To fine-tune a model using knowledge distillation loss we will need three distinct file:
73
+
74
+ * Datasets
75
+ ```python
76
+ from datasets import load_dataset
77
+
78
+ train = load_dataset(
79
+ "lightonai/ms-marco-fr-bge",
80
+ "train",
81
+ split="train",
82
+ )
83
+
84
+ queries = load_dataset(
85
+ "lightonai/ms-marco-fr-bge",
86
+ "queries",
87
+ split="train",
88
+ )
89
+
90
+ documents = load_dataset(
91
+ "lightonai/ms-marco-fr-bge",
92
+ "documents",
93
+ split="train",
94
+ )
95
+ ```
96
+
97
+ Where:
98
+ - `train` contains three distinct columns: `['query_id', 'document_ids', 'scores']`
99
+
100
+ ```python
101
+ {
102
+ "query_id": 54528,
103
+ "document_ids": [
104
+ 6862419,
105
+ 335116,
106
+ 339186,
107
+ 7509316,
108
+ 7361291,
109
+ 7416534,
110
+ 5789936,
111
+ 5645247,
112
+ ],
113
+ "scores": [
114
+ 0.4546215673141326,
115
+ 0.6575686537173476,
116
+ 0.26825184192900203,
117
+ 0.5256195579370395,
118
+ 0.879939718687207,
119
+ 0.7894968184862693,
120
+ 0.6450100468854655,
121
+ 0.5823844608171467,
122
+ ],
123
+ }
124
+ ```
125
+
126
+ Assert that the length of document_ids is the same as scores.
127
+
128
+ - `queries` contains two distinct columns: `['query_id', 'text']`
129
+
130
+ ```python
131
+ {"query_id": 749480, "text": "what is function of magnesium in human body"}
132
+ ```
133
+
134
+ - `documents` contains two distinct columns: `['document_ids', 'text']`
135
+
136
+ ```python
137
+ {
138
+ "document_id": 136062,
139
+ "text": "2. Also called tan .a fundamental trigonometric function that, in a right triangle, is expressed as the ratio of the side opposite an acute angle to the side adjacent to that angle. 3. in immediate physical contact; touching; abutting. 4. a. touching at a single point, as a tangent in relation to a curve or surface.lso called tan .a fundamental trigonometric function that, in a right triangle, is expressed as the ratio of the side opposite an acute angle to the side adjacent to that angle. 3. in immediate physical contact; touching; abutting. 4. a. touching at a single point, as a tangent in relation to a curve or surface.",
140
+ }
141
+ ```
dataset.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3dae8ffc93ada5bd09a141e0949fe3f1707d22eff48bea15bd88396657ab9d8
3
+ size 334279419
french_collection.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7db816f8c27651502a174f9733cefe4b612107c1a741bb58bb24c064c60901fe
3
+ size 1879411601
french_queries.train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8422eb59ba438262b389986264e13c56c519a6eb8c5f5c1322b31d9c8709830
3
+ size 29311183