|
import torch |
|
import time |
|
from multiprocessing import Pool, set_start_method |
|
|
|
|
|
def run_on_single_gpu(device): |
|
a = torch.randn(1000,1000).cuda(device) |
|
b = torch.randn(1000,1000).cuda(device) |
|
ta = a |
|
tb = b |
|
while True: |
|
a = ta |
|
b = tb |
|
a = torch.sin(a) |
|
b = torch.sin(b) |
|
a = torch.cos(a) |
|
b = torch.cos(b) |
|
a = torch.tan(a) |
|
b = torch.tan(b) |
|
a = torch.exp(a) |
|
b = torch.exp(b) |
|
a = torch.log(a) |
|
b = torch.log(b) |
|
b = torch.matmul(a, b) |
|
|
|
|
|
if __name__ == '__main__': |
|
set_start_method('spawn') |
|
print('start running') |
|
num_gpus = torch.cuda.device_count() |
|
pool = Pool(processes=num_gpus) |
|
pool.map(run_on_single_gpu, range(num_gpus)) |
|
pool.close() |
|
pool.join() |