Datasets:
File size: 5,213 Bytes
42b7615 831b124 42b7615 464765c 42b7615 464765c 42b7615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LegalLAMA: Legal LAnguage Model Analysis (LAMA) (LAMA) dataset."""
import json
import os
import datasets
MAIN_CITATION = """
@inproceedings{chalkidis-garneau-etal-2023-lexlms,
title = {{LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development}},
author = "Chalkidis*, Ilias and
Garneau*, Nicolas and
Goanta, Catalina and
Katz, Daniel Martin and
Søgaard, Anders",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics",
month = july,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/xxx",
}
"""
_DESCRIPTION = """LegalLAMA: Legal LAnguage Model Analysis (LAMA) (LAMA) dataset."""
MAIN_PATH = 'https://huggingface.co/datasets/lexlms/legal_lama/resolve/main'
class LegalLAMAConfig(datasets.BuilderConfig):
"""BuilderConfig for XAI - Fairness."""
def __init__(
self,
data_url,
**kwargs,
):
"""BuilderConfig for LegalLAMA.
Args:
data_url: `string`, url to download the zip file from
**kwargs: keyword arguments forwarded to super.
"""
super(LegalLAMAConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.data_url = data_url
class LegalLAMA(datasets.GeneratorBasedBuilder):
"""LegalLAMA: A multilingual benchmark for evaluating fairness in legal text processing. Version 1.0"""
BUILDER_CONFIGS = [
LegalLAMAConfig(
name="canadian_crimes",
data_url=os.path.join(MAIN_PATH, "canadian_crimes.jsonl"),
),
LegalLAMAConfig(
name="canadian_sections",
data_url=os.path.join(MAIN_PATH, "canadian_sections.jsonl"),
),
LegalLAMAConfig(
name="cjeu_terms",
data_url=os.path.join(MAIN_PATH, "cjeu_terms.jsonl"),
),
LegalLAMAConfig(
name="ecthr_terms",
data_url=os.path.join(MAIN_PATH, "ecthr_terms.jsonl"),
),
LegalLAMAConfig(
name="ecthr_articles",
data_url=os.path.join(MAIN_PATH, "ecthr_articles.jsonl"),
),
LegalLAMAConfig(
name="us_crimes",
data_url=os.path.join(MAIN_PATH, "us_crimes.jsonl"),
),
LegalLAMAConfig(
name="us_terms",
data_url=os.path.join(MAIN_PATH, "us_terms.jsonl"),
),
LegalLAMAConfig(
name="contract_types",
data_url=os.path.join(MAIN_PATH, "contract_types.jsonl"),
),
LegalLAMAConfig(
name="contract_sections",
data_url=os.path.join(MAIN_PATH, "contract_sections.jsonl"),
),
]
def _info(self):
features = {"text": datasets.Value("string"), "label": datasets.Value("string"), "category": datasets.Value("string")}
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(features),
homepage="https://huggingface.co/datasets/lexlms/legal_lama",
citation=MAIN_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
"split": "test",
},
),
]
def _get_category(self, sample):
if 'canadian_article' in sample:
category = sample['canadian_article']
elif 'legal_topic' in sample:
category = sample['legal_topic']
elif 'echr_article' in sample:
category = sample['echr_article']
else:
category = sample['obj_label']
return category
def _generate_examples(self, filepath, split):
"""This function returns the examples in the raw (text) form."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
example = {
"text": data["masked_sentences"][0],
"label": data["obj_label"],
"category": self._get_category(data)
}
yield id_, example |