File size: 5,690 Bytes
5b30e35
 
b98c9e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b30e35
b98c9e7
5b30e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
viewer: true

dataset_info:
- config_name: Chinese
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: duration
    dtype: float64
  splits:
  - name: train
    num_bytes: 182566135.142
    num_examples: 1242
  - name: eval
    num_bytes: 12333509.0
    num_examples: 91
  - name: test
    num_bytes: 33014034.0
    num_examples: 225
  download_size: 227567289
  dataset_size: 227913678.142
- config_name: English
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: duration
    dtype: float64
  splits:
  - name: train
    num_bytes: 2789314997.152
    num_examples: 25512
  - name: eval
    num_bytes: 299242087.632
    num_examples: 2816
  - name: test
    num_bytes: 553873172.749
    num_examples: 4751
  download_size: 3627859275
  dataset_size: 3642430257.533
- config_name: French
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: duration
    dtype: float64
  splits:
  - name: train
    num_bytes: 168642145.231
    num_examples: 1403
  - name: eval
    num_bytes: 5164908.0
    num_examples: 42
  - name: test
    num_bytes: 42780388.0
    num_examples: 344
  download_size: 216118671
  dataset_size: 216587441.231
- config_name: German
  features:
  - name: audio
    dtype: audio
  - name: text
    dtype: string
  - name: duration
    dtype: float64
  splits:
  - name: train
    num_bytes: 181312217.029
    num_examples: 1443
  - name: test
    num_bytes: 137762006.256
    num_examples: 1091
  - name: eval
    num_bytes: 35475098.0
    num_examples: 287
  download_size: 354494147
  dataset_size: 354549321.285
- config_name: Vietnamese
  features:
  - name: audio
    dtype: audio
  - name: text
    dtype: string
  - name: duration
    dtype: float64
  splits:
  - name: train
    num_bytes: 56584901.453
    num_examples: 2773
  - name: test
    num_bytes: 69598082.31
    num_examples: 3437
  - name: dev
    num_bytes: 57617298.896
    num_examples: 2912
  download_size: 181789393
  dataset_size: 183800282.659
configs:
- config_name: Chinese
  data_files:
  - split: train
    path: Chinese/train-*
  - split: eval
    path: Chinese/eval-*
  - split: test
    path: Chinese/test-*
- config_name: English
  data_files:
  - split: train
    path: English/train-*
  - split: eval
    path: English/eval-*
  - split: test
    path: English/test-*
- config_name: French
  data_files:
  - split: train
    path: French/train-*
  - split: eval
    path: French/eval-*
  - split: test
    path: French/test-*
- config_name: German
  data_files:
  - split: train
    path: German/train-*
  - split: test
    path: German/test-*
  - split: eval
    path: German/eval-*
- config_name: Vietnamese
  data_files:
  - split: train
    path: Vietnamese/train-*
  - split: test
    path: Vietnamese/test-*
  - split: dev
    path: Vietnamese/dev-*
---

# MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder

## Description:
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. 
This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. 
In this work, we introduce \textit{MultiMed}, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset. 
To our best knowledge, \textit{MultiMed} stands as the largest and the first multilingual medical ASR dataset, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes. 


Please cite this paper: https://arxiv.org/abs/2404.05659

    @inproceedings{VietMed_dataset,
      title={VietMed: A Dataset and Benchmark for Automatic Speech Recognition of Vietnamese in the Medical Domain}, 
      author={Khai Le-Duc},
      year={2024},
      booktitle = {Proceedings of the Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    }
To load labeled data, please refer to our [HuggingFace](https://huggingface.co/datasets/leduckhai/VietMed), [Paperswithcodes](https://paperswithcode.com/dataset/vietmed).

For full dataset (labeled data + unlabeled data) and pre-trained models, please refer to [Google Drive](https://drive.google.com/drive/folders/1hsoB_xjWh66glKg3tQaSLm4S1SVPyANP?usp=sharing)

## Limitations:

Since this dataset is human-labeled, 1-2 ending/starting words present in the recording might not be present in the transcript. 
That's the nature of human-labeled dataset, in which humans can't distinguish words that are faster than 1 second.
In contrast, forced alignment could solve this problem because machines can "listen" words in 10ms-20ms.
However, forced alignment only learns what it is taught by humans.
Therefore, no transcript is perfect. We will conduct human-machine collaboration to get "more perfect" transcript in the next paper.

## Contact:

If any links are broken, please contact me for fixing!

Thanks [Phan Phuc](https://www.linkedin.com/in/pphuc/) for dataset viewer <3

```
Le Duc Khai
University of Toronto, Canada
Email: [email protected]
GitHub: https://github.com/leduckhai
```