File size: 4,570 Bytes
3320c68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837edef
 
3320c68
 
 
 
 
 
 
 
 
 
 
 
 
 
c9930d6
3320c68
 
cbcf59c
3320c68
 
 
cbcf59c
 
 
3320c68
 
 
 
f3b066d
837edef
cbcf59c
 
 
 
 
3320c68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9930d6
7e54614
837edef
 
 
f3b066d
837edef
f3b066d
d0ddbcf
7e54614
d0ddbcf
f3b066d
 
 
 
7e54614
f3b066d
 
 
 
 
7e54614
f3b066d
837edef
f3b066d
3320c68
837edef
 
 
 
 
 
 
 
 
 
 
 
 
 
3320c68
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import json

import datasets

import os

_CITATION = '''
@inproceedings{Ammanabrolu2020AAAI, 
title={Story Realization: Expanding Plot Events into Sentences}, 
author={Prithviraj Ammanabrolu and Ethan Tien and Wesley Cheung and Zhaochen Luo and William Ma and Lara J. Martin and Mark O. Riedl}, 
journal={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)}, 
year={2020}, 
volume={34},
number={05},
url={https://ojs.aaai.org//index.php/AAAI/article/view/6232}
}
'''

_DESCRIPTION = 'Loading script for the science fiction TV show plot dataset.'

_URLS = {'Scifi_TV_Shows': "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/resolve/main/scifiTVshows.zip"}


class Scifi_TV_Shows(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            version=datasets.Version('1.1.0'),
            name="Scifi_TV_Shows", 
            description=f'Science fiction TV show plot summaries.',
        )
    ]

    def _info(self):
        features = datasets.Features({
            'story_num': datasets.Value('int16'),
            'story_line': datasets.Value('int16'),
            'event': datasets.Sequence(datasets.Value('string')), 
            'gen_event': datasets.Sequence(datasets.Value('string')),
            'sent': datasets.Value('string'),
            'gen_sent': datasets.Value('string'),            
            'entities': datasets.Value('string'),
        })

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage='https://github.com/rajammanabrolu/StoryRealization',
            # License for the dataset if available
            license='The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/',
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        my_urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(my_urls)
        train_filepath = os.path.join(data_dir, "scifi-train.txt")
        test_filepath = os.path.join(data_dir, "scifi-test.txt")
        val_filepath = os.path.join(data_dir, "scifi-val.txt")
        return[
               datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        'filepath': train_filepath,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        'filepath': test_filepath,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        'filepath': val_filepath,
                    },
                ), 
         ]                                                                             

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:              
            for id_, line in enumerate(f.readlines()):
                line = line.strip()
                story_num, line_num, event, gen_event, sent, gen_sent, entities = line.split("|||")
                yield id_, {
		    'story_num': story_num,
		    'story_line': line_num,
		    'event': eval(event),
		    'gen_event': eval(gen_event),
		    'sent': sent,
		    'gen_sent': gen_sent,                       
		    'entities': entities,
                }