File size: 4,570 Bytes
3320c68 837edef 3320c68 c9930d6 3320c68 cbcf59c 3320c68 cbcf59c 3320c68 f3b066d 837edef cbcf59c 3320c68 c9930d6 7e54614 837edef f3b066d 837edef f3b066d d0ddbcf 7e54614 d0ddbcf f3b066d 7e54614 f3b066d 7e54614 f3b066d 837edef f3b066d 3320c68 837edef 3320c68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import datasets
import os
_CITATION = '''
@inproceedings{Ammanabrolu2020AAAI,
title={Story Realization: Expanding Plot Events into Sentences},
author={Prithviraj Ammanabrolu and Ethan Tien and Wesley Cheung and Zhaochen Luo and William Ma and Lara J. Martin and Mark O. Riedl},
journal={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
year={2020},
volume={34},
number={05},
url={https://ojs.aaai.org//index.php/AAAI/article/view/6232}
}
'''
_DESCRIPTION = 'Loading script for the science fiction TV show plot dataset.'
_URLS = {'Scifi_TV_Shows': "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/resolve/main/scifiTVshows.zip"}
class Scifi_TV_Shows(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
version=datasets.Version('1.1.0'),
name="Scifi_TV_Shows",
description=f'Science fiction TV show plot summaries.',
)
]
def _info(self):
features = datasets.Features({
'story_num': datasets.Value('int16'),
'story_line': datasets.Value('int16'),
'event': datasets.Sequence(datasets.Value('string')),
'gen_event': datasets.Sequence(datasets.Value('string')),
'sent': datasets.Value('string'),
'gen_sent': datasets.Value('string'),
'entities': datasets.Value('string'),
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage='https://github.com/rajammanabrolu/StoryRealization',
# License for the dataset if available
license='The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/',
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
my_urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
train_filepath = os.path.join(data_dir, "scifi-train.txt")
test_filepath = os.path.join(data_dir, "scifi-test.txt")
val_filepath = os.path.join(data_dir, "scifi-val.txt")
return[
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'filepath': train_filepath,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
'filepath': test_filepath,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
'filepath': val_filepath,
},
),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
for id_, line in enumerate(f.readlines()):
line = line.strip()
story_num, line_num, event, gen_event, sent, gen_sent, entities = line.split("|||")
yield id_, {
'story_num': story_num,
'story_line': line_num,
'event': eval(event),
'gen_event': eval(gen_event),
'sent': sent,
'gen_sent': gen_sent,
'entities': entities,
}
|