lara-martin
commited on
Delete FIREBALL.py
Browse files- FIREBALL.py +0 -236
FIREBALL.py
DELETED
@@ -1,236 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
-
"""TODO: Add a description here."""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
import json
|
20 |
-
import jsonlines
|
21 |
-
import os
|
22 |
-
|
23 |
-
import datasets
|
24 |
-
|
25 |
-
|
26 |
-
# TODO: Add BibTeX citation
|
27 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
28 |
-
_CITATION = """\
|
29 |
-
@inproceedings{Zhu2023FIREBALL,
|
30 |
-
title={{FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured Game State Information}},
|
31 |
-
author={Zhu, Andrew and Aggarwal, Karmanya and Feng, Alexander and Martin, Lara J. and Callison-Burch, Chris},
|
32 |
-
year={2023},
|
33 |
-
booktitle={Annual Meeting of the Association for Computational Linguistics (ACL)},
|
34 |
-
month={7},
|
35 |
-
url={https://aclanthology.org/2023.acl-long.229/},
|
36 |
-
address={Toronto, Canada},
|
37 |
-
pages={4171--4193},
|
38 |
-
publisher={ACL},
|
39 |
-
doi={10.18653/v1/2023.acl-long.229}
|
40 |
-
}
|
41 |
-
"""
|
42 |
-
|
43 |
-
|
44 |
-
_DESCRIPTION = """\
|
45 |
-
FIREBALL Dungeons & Dragons data with narrative and Avrae scripting commands.
|
46 |
-
"""
|
47 |
-
|
48 |
-
_HOMEPAGE = "https://github.com/zhudotexe/FIREBALL"
|
49 |
-
|
50 |
-
# TODO: Add the licence for the dataset here if you can find it
|
51 |
-
_LICENSE = "cc-by-4.0"
|
52 |
-
|
53 |
-
|
54 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
55 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
56 |
-
_URLS = {
|
57 |
-
"FIREBALL": "https://huggingface.co/datasets/lara-martin/FIREBALL/tree/main/filtered",
|
58 |
-
}
|
59 |
-
|
60 |
-
|
61 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
62 |
-
class NewDataset(datasets.GeneratorBasedBuilder):
|
63 |
-
"""TODO: Short description of my dataset."""
|
64 |
-
|
65 |
-
VERSION = datasets.Version("1.0.0")
|
66 |
-
|
67 |
-
# This is an example of a dataset with multiple configurations.
|
68 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
69 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
70 |
-
|
71 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
72 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
73 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
74 |
-
|
75 |
-
# You will be able to load one or the other configurations in the following list with
|
76 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
77 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
78 |
-
BUILDER_CONFIGS = [
|
79 |
-
datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
80 |
-
]
|
81 |
-
|
82 |
-
DEFAULT_CONFIG_NAME = "FIREBALL" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
83 |
-
|
84 |
-
def _info(self):
|
85 |
-
|
86 |
-
features = datasets.Features(
|
87 |
-
{
|
88 |
-
"speaker_id": datasets.Value('int64'),
|
89 |
-
"before_utterances": datasets.Sequence(datasets.Value('string')),
|
90 |
-
'combat_state_before': datasets.Sequence(
|
91 |
-
{
|
92 |
-
'name': datasets.Value(dtype='string'),
|
93 |
-
'hp': datasets.Value(dtype='string'),
|
94 |
-
'class': datasets.Value(dtype='string'),
|
95 |
-
'race': datasets.Value(dtype='string'),
|
96 |
-
'attacks': datasets.Value(dtype='string'),
|
97 |
-
'spells': datasets.Value(dtype='string'),
|
98 |
-
'actions': datasets.Value(dtype='string'),
|
99 |
-
'effects': datasets.Value(dtype='string'),
|
100 |
-
'description': datasets.Value(dtype='string'),
|
101 |
-
'controller_id': datasets.Value(dtype='string')
|
102 |
-
}
|
103 |
-
), #list of dictionaries
|
104 |
-
'current_actor': {
|
105 |
-
'name': datasets.Value(dtype='string'),
|
106 |
-
'hp': datasets.Value(dtype='string'),
|
107 |
-
'class': datasets.Value(dtype='string'),
|
108 |
-
'race': datasets.Value(dtype='string'),
|
109 |
-
'attacks': datasets.Value(dtype='string'),
|
110 |
-
'spells': datasets.Value(dtype='string'),
|
111 |
-
'actions': datasets.Value(dtype='string'),
|
112 |
-
'effects': datasets.Value(dtype='string'),
|
113 |
-
'description': datasets.Value(dtype='string'),
|
114 |
-
'controller_id': datasets.Value(dtype='string')
|
115 |
-
}, #dictionary
|
116 |
-
'commands_norm': datasets.value('string'),
|
117 |
-
'automation_results': datasets.value('string'),
|
118 |
-
'caster_after': {
|
119 |
-
'name': datasets.Value(dtype='string'),
|
120 |
-
'hp': datasets.Value(dtype='string'),
|
121 |
-
'class': datasets.Value(dtype='string'),
|
122 |
-
'race': datasets.Value(dtype='string'),
|
123 |
-
'attacks': datasets.Value(dtype='string'),
|
124 |
-
'spells': datasets.Value(dtype='string'),
|
125 |
-
'actions': datasets.Value(dtype='string'),
|
126 |
-
'effects': datasets.Value(dtype='string'),
|
127 |
-
'description': datasets.Value(dtype='string'),
|
128 |
-
'controller_id': datasets.Value(dtype='string')
|
129 |
-
}, #dictionary
|
130 |
-
'targets_after': datasets.Sequence(
|
131 |
-
{
|
132 |
-
'name': datasets.Value(dtype='string'),
|
133 |
-
'hp': datasets.Value(dtype='string'),
|
134 |
-
'class': datasets.Value(dtype='string'),
|
135 |
-
'race': datasets.Value(dtype='string'),
|
136 |
-
'attacks': datasets.Value(dtype='string'),
|
137 |
-
'spells': datasets.Value(dtype='string'),
|
138 |
-
'actions': datasets.Value(dtype='string'),
|
139 |
-
'effects': datasets.Value(dtype='string'),
|
140 |
-
'description': datasets.Value(dtype='string'),
|
141 |
-
'controller_id': datasets.Value(dtype='string')
|
142 |
-
}
|
143 |
-
), #list of dictionaries
|
144 |
-
'combat_state_after': datasets.Sequence(
|
145 |
-
{
|
146 |
-
'name': datasets.Value(dtype='string'),
|
147 |
-
'hp': datasets.Value(dtype='string'),
|
148 |
-
'class': datasets.Value(dtype='string'),
|
149 |
-
'race': datasets.Value(dtype='string'),
|
150 |
-
'attacks': datasets.Value(dtype='string'),
|
151 |
-
'spells': datasets.Value(dtype='string'),
|
152 |
-
'actions': datasets.Value(dtype='string'),
|
153 |
-
'effects': datasets.Value(dtype='string'),
|
154 |
-
'description': datasets.Value(dtype='string'),
|
155 |
-
'controller_id': datasets.Value(dtype='string')
|
156 |
-
}
|
157 |
-
), #list of dictionaries
|
158 |
-
'after_utterances': datasets.Sequence(datasets.Value('string')),
|
159 |
-
'utterance_history': datasets.Sequence(datasets.Value('string')),
|
160 |
-
'before_idxs': datasets.Sequence(datasets.Value('int16')),
|
161 |
-
'before_state_idx': datasets.Value('int16'),
|
162 |
-
'command_idxs': datasets.Sequence(datasets.Value('int16')),
|
163 |
-
'after_state_idx': datasets.Value('int16'),
|
164 |
-
'after_idxs': datasets.Sequence(datasets.Value('int16')),
|
165 |
-
'embed_idxs': datasets.Sequence(datasets.Value('int16'))
|
166 |
-
}
|
167 |
-
)
|
168 |
-
return datasets.DatasetInfo(
|
169 |
-
# This is the description that will appear on the datasets page.
|
170 |
-
description=_DESCRIPTION,
|
171 |
-
# This defines the different columns of the dataset and their types
|
172 |
-
features=features, # Here we define them above because they are different between the two configurations
|
173 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
174 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
175 |
-
# supervised_keys=("sentence", "label"),
|
176 |
-
# Homepage of the dataset for documentation
|
177 |
-
homepage=_HOMEPAGE,
|
178 |
-
# License for the dataset if available
|
179 |
-
license=_LICENSE,
|
180 |
-
# Citation for the dataset
|
181 |
-
citation=_CITATION,
|
182 |
-
)
|
183 |
-
|
184 |
-
# def _split_generators(self, dl_manager):
|
185 |
-
# # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
186 |
-
# # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
187 |
-
|
188 |
-
# # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
189 |
-
# # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
190 |
-
# # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
191 |
-
# urls = _URLS[self.config.name]
|
192 |
-
# data_dir = dl_manager.download_and_extract(urls)
|
193 |
-
# for root,dirs,files in os.walk(data_dir):
|
194 |
-
# for f in files:
|
195 |
-
# data = os.path.join()
|
196 |
-
# return [
|
197 |
-
# datasets.SplitGenerator(
|
198 |
-
# name=datasets.Split.TRAIN,
|
199 |
-
# # These kwargs will be passed to _generate_examples
|
200 |
-
# gen_kwargs={
|
201 |
-
# "filepath": os.path.join(data_dir, "train.jsonl"),
|
202 |
-
# "split": "train",
|
203 |
-
# },
|
204 |
-
# ),
|
205 |
-
# ]
|
206 |
-
|
207 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
208 |
-
def _generate_examples(self, filepath, split):
|
209 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
210 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
211 |
-
key = 0
|
212 |
-
for root,dirs,files in os.walk(filepath):
|
213 |
-
for file in files:
|
214 |
-
with jsonlines.open(os.path.join(root,file)) as f:
|
215 |
-
for data in f:
|
216 |
-
# Yields examples as (key, example) tuples
|
217 |
-
yield key, {
|
218 |
-
"speaker_id": data["speaker_id"],
|
219 |
-
"before_utterances": data["before_utterances"],
|
220 |
-
'combat_state_before': data['combat_state_before'],
|
221 |
-
'current_actor': data["current_actor"],
|
222 |
-
'commands_norm': data['commands_norm'],
|
223 |
-
'automation_results': data['automation_results'],
|
224 |
-
'caster_after': data['caster_after'],
|
225 |
-
'targets_after': data['targets_after'],
|
226 |
-
'combat_state_after': data['combat_state_after'],
|
227 |
-
'after_utterances': data['after_utterances'],
|
228 |
-
'utterance_history': data['utterance_history'],
|
229 |
-
'before_idxs': data['before_idxs'],
|
230 |
-
'before_state_idx': data['before_state_idx'],
|
231 |
-
'command_idxs': data['command_idxs'],
|
232 |
-
'after_state_idx': data['after_state_idx'],
|
233 |
-
'after_idxs': data['after_idxs'],
|
234 |
-
'embed_idxs': data['embed_idxs']
|
235 |
-
}
|
236 |
-
key+=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|