File size: 10,991 Bytes
4f16171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aa7123
4f16171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a6b0c
4f16171
 
26ac6ab
4f16171
 
 
 
 
 
 
 
 
 
 
 
 
 
18f66bd
4f16171
 
 
 
 
1aa7123
4f16171
3530a96
ac1ebe0
428a5b5
 
ac1ebe0
 
 
 
 
 
 
 
 
 
428a5b5
 
3530a96
 
 
 
 
 
 
 
 
 
 
 
ac1ebe0
 
1e93dec
ac1ebe0
 
 
 
 
 
 
 
 
 
1e93dec
 
 
ac1ebe0
 
 
 
 
 
 
 
 
 
1e93dec
 
 
 
ac1ebe0
 
 
 
 
 
 
 
 
 
1e93dec
 
ac1ebe0
 
 
 
 
 
 
 
4f16171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18f66bd
26ac6ab
36f34c4
d5df03d
18f66bd
 
 
36f34c4
 
 
d853f37
 
36f34c4
18f66bd
 
 
 
 
d23d0f2
18f66bd
 
 
4f16171
 
b032afa
d853f37
4f16171
 
d23d0f2
 
4f16171
 
 
3530a96
e8638ce
99fc55b
3530a96
d15d340
1e93dec
 
 
 
 
 
 
 
 
 
 
 
4f16171
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import jsonlines
import os

import datasets
from datasets import Features


_CITATION = """\
@inproceedings{Zhu2023FIREBALL,
title={{FIREBALL: A Dataset of Dungeons and Dragons Actual-Play with Structured Game State Information}},
author={Zhu, Andrew and Aggarwal, Karmanya and Feng, Alexander and Martin, Lara J. and Callison-Burch, Chris},
year={2023},
booktitle={Annual Meeting of the Association for Computational Linguistics (ACL)},
month={7},
url={https://aclanthology.org/2023.acl-long.229/},
address={Toronto, Canada},
pages={4171--4193},
publisher={ACL},
doi={10.18653/v1/2023.acl-long.229}
}
"""
_DESCRIPTION = """\
FIREBALL Dungeons & Dragons data with narrative and Avrae scripting commands.
"""
_HOMEPAGE = "https://github.com/zhudotexe/FIREBALL"
_LICENSE = "cc-by-4.0"
_URLS = {
    "FIREBALL": "https://huggingface.co/datasets/lara-martin/FIREBALL/raw/main/"
}

class Fireball(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="FIREBALL", version=VERSION),
    ]


    def _info(self):
        
        features = Features(
            {
                "speaker_id": datasets.Value('int64'),
                "before_utterances": datasets.Sequence(datasets.Value('string')), 
                'combat_state_before': datasets.Sequence(
                    { 
                    'name': datasets.Value(dtype='string'),
                    'hp': datasets.Value(dtype='string'),
                    'class': datasets.Value(dtype='string'),
                    'race': datasets.Value(dtype='string'),
                    'attacks': datasets.Value(dtype='string'),
                    'spells': datasets.Value(dtype='string'),
                    'actions': datasets.Value(dtype='string'),
                    'effects': datasets.Value(dtype='string'),
                    'description': datasets.Value(dtype='string'),
                    'controller_id': datasets.Value(dtype='string')
                    }
                ), #list of dictionaries
                'current_actor': { 
                    'name': datasets.Value(dtype='string'),
                    'hp': datasets.Value(dtype='string'),
                    'class': datasets.Value(dtype='string'),
                    'race': datasets.Value(dtype='string'),
                    'attacks': datasets.Value(dtype='string'),
                    'spells': datasets.Value(dtype='string'),
                    'actions': datasets.Value(dtype='string'),
                    'effects': datasets.Value(dtype='string'),
                    'description': datasets.Value(dtype='string'),
                    'controller_id': datasets.Value(dtype='string')
                }, #dictionary
                'commands_norm': datasets.Value('string'),
                'automation_results': datasets.Value('string'),
                'caster_after': {
                    'name': datasets.Value(dtype='string'),
                    'hp': datasets.Value(dtype='string'),
                    'class': datasets.Value(dtype='string'),
                    'race': datasets.Value(dtype='string'),
                    'attacks': datasets.Value(dtype='string'),
                    'spells': datasets.Value(dtype='string'),
                    'actions': datasets.Value(dtype='string'),
                    'effects': datasets.Value(dtype='string'),
                    'description': datasets.Value(dtype='string'),
                    'controller_id': datasets.Value(dtype='string')
                }, #dictionary
                'targets_after': datasets.Sequence(
                    { 
                    'name': datasets.Value(dtype='string'),
                    'hp': datasets.Value(dtype='string'),
                    'class': datasets.Value(dtype='string'),
                    'race': datasets.Value(dtype='string'),
                    'attacks': datasets.Value(dtype='string'),
                    'spells': datasets.Value(dtype='string'),
                    'actions': datasets.Value(dtype='string'),
                    'effects': datasets.Value(dtype='string'),
                    'description': datasets.Value(dtype='string'),
                    'controller_id': datasets.Value(dtype='string')
                    }
                ), #list of dictionaries
                'combat_state_after': datasets.Sequence(
                    { 
                    'name': datasets.Value(dtype='string'),
                    'hp': datasets.Value(dtype='string'),
                    'class': datasets.Value(dtype='string'),
                    'race': datasets.Value(dtype='string'),
                    'attacks': datasets.Value(dtype='string'),
                    'spells': datasets.Value(dtype='string'),
                    'actions': datasets.Value(dtype='string'),
                    'effects': datasets.Value(dtype='string'),
                    'description': datasets.Value(dtype='string'),
                    'controller_id': datasets.Value(dtype='string')
                    }
                ), #list of dictionaries
                'after_utterances': datasets.Sequence(datasets.Value('string')), 
                'utterance_history': datasets.Sequence(datasets.Value('string')),
                'before_idxs': datasets.Sequence(datasets.Value('int16')),
                'before_state_idx': datasets.Value('int16'),
                'command_idxs': datasets.Sequence(datasets.Value('int16')),
                'after_state_idx': datasets.Value('int16'),
                'after_idxs': datasets.Sequence(datasets.Value('int16')),
                'embed_idxs': datasets.Sequence(datasets.Value('int16'))
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # based off of OSCAR - https://huggingface.co/datasets/oscar/blob/main/oscar.py
        url = _URLS[self.config.name]
        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        file_list = dl_manager.download(url+"files.txt")
        with open(file_list) as f:
            data_filenames  = [line.strip() for line in f if line]
            data_urls = dl_manager.download([url+"filtered/"+data_filename for data_filename in data_filenames])
            # data_urls = dl_manager.download([url+"filtered/00068c6b03adc2c102756053cf6edd05.jsonl"])
        downloaded_files = dl_manager.download(data_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": downloaded_files
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath):
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        key = 0
        for file in filepath:
            with jsonlines.open(file) as f:
              for data in f:
                # Yields examples as (key, example) tuples
                yield key, {
                    "speaker_id": data["speaker_id"],
                    "before_utterances": data["before_utterances"], 
                    'combat_state_before': data['combat_state_before'],
                    'current_actor': data["current_actor"],
                    'commands_norm': data['commands_norm'],
                    'automation_results': data['automation_results'],
                    'caster_after': data['caster_after'],
                    'targets_after': data['targets_after'],
                    'combat_state_after': data['combat_state_after'],
                    'after_utterances': data['after_utterances'],
                    'utterance_history': data['utterance_history'],
                    'before_idxs': data['before_idxs'],
                    'before_state_idx': data['before_state_idx'],
                    'command_idxs': data['command_idxs'],
                    'after_state_idx': data['after_state_idx'],
                    'after_idxs': data['after_idxs'],
                    'embed_idxs': data['embed_idxs']
                }
                key+=1