carlosdanielhernandezmena commited on
Commit
312c544
1 Parent(s): 47ad3e4

Delete loading script

Browse files
Files changed (1) hide show
  1. raddromur_asr.py +0 -122
raddromur_asr.py DELETED
@@ -1,122 +0,0 @@
1
- from collections import defaultdict
2
- import os
3
- import json
4
- import csv
5
-
6
- import datasets
7
-
8
- _NAME="raddromur_asr"
9
- _VERSION="1.0.0"
10
- _AUDIO_EXTENSIONS=".flac"
11
-
12
- _DESCRIPTION = """
13
- The Raddrómur Corpus is intended for the speech recognition field and it is made out of radio podcasts mostly taken from RÚV (ruv.is). Such podcasts were selected because they contained a text script that matches with certain fidelity what is said during the show. After automatic segmentation of the episodes, the transcriptions were inferred using the scripts along with a forced alignment technique.
14
- """
15
-
16
- _CITATION = """
17
- @misc{carlosmenaraddromur2022,
18
- title={Raddrómur Icelandic Speech 22.09},
19
- author={Hernández Mena, Carlos Daniel and Hedström, Staffan and Þórhallsdóttir, Ragnheiður and Fong, Judy Y. and Gunnarsson, Þorsteinn Daði and Sigurðardóttir, Helga Svala and Þorsteinsdóttir, Helga Lára and Guðnason, Jón},
20
- year={2022},
21
- url={http://hdl.handle.net/20.500.12537/286},
22
- }
23
- """
24
-
25
- _HOMEPAGE = "http://hdl.handle.net/20.500.12537/286"
26
-
27
- _LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"
28
-
29
- _BASE_DATA_DIR = "corpus/"
30
- _METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv")
31
-
32
- _TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths")
33
-
34
- class RaddromurAsrConfig(datasets.BuilderConfig):
35
- """BuilderConfig for Raddrómur Corpus"""
36
-
37
- def __init__(self, name, **kwargs):
38
- name=_NAME
39
- super().__init__(name=name, **kwargs)
40
-
41
- class RaddromurAsr(datasets.GeneratorBasedBuilder):
42
- """Raddrómur Icelandic Speech 22.09"""
43
-
44
- VERSION = datasets.Version(_VERSION)
45
- BUILDER_CONFIGS = [
46
- RaddromurAsrConfig(
47
- name=_NAME,
48
- version=datasets.Version(_VERSION),
49
- )
50
- ]
51
-
52
- def _info(self):
53
- features = datasets.Features(
54
- {
55
- "audio_id": datasets.Value("string"),
56
- "audio": datasets.Audio(sampling_rate=16000),
57
- "podcast_id": datasets.Value("string"),
58
- "segment_num": datasets.Value("int32"),
59
- "start_time": datasets.Value("string"),
60
- "duration": datasets.Value("float32"),
61
- "mafia_score": datasets.Value("float32"),
62
- "normalized_text": datasets.Value("string"),
63
- }
64
- )
65
- return datasets.DatasetInfo(
66
- description=_DESCRIPTION,
67
- features=features,
68
- homepage=_HOMEPAGE,
69
- license=_LICENSE,
70
- citation=_CITATION,
71
- )
72
-
73
- def _split_generators(self, dl_manager):
74
-
75
- metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
76
-
77
- tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
78
-
79
- hash_tar_files=defaultdict(dict)
80
- with open(tars_train,'r') as f:
81
- hash_tar_files['train']=[path.replace('\n','') for path in f]
82
-
83
- hash_meta_paths={"train":metadata_train}
84
- audio_paths = dl_manager.download(hash_tar_files)
85
-
86
- splits=["train"]
87
- local_extracted_audio_paths = (
88
- dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
89
- {
90
- split:[None] * len(audio_paths[split]) for split in splits
91
- }
92
- )
93
-
94
- return [
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TRAIN,
97
- gen_kwargs={
98
- "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
99
- "local_extracted_archives_paths": local_extracted_audio_paths["train"],
100
- "metadata_paths": hash_meta_paths["train"],
101
- }
102
- ),
103
- ]
104
-
105
- def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
106
-
107
- features = ["podcast_id","segment_num","start_time","duration","mafia_score","normalized_text"]
108
-
109
- with open(metadata_paths) as f:
110
- metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
111
-
112
- for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
113
- for audio_filename, audio_file in audio_archive:
114
- #audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0]
115
- audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
116
- path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
117
-
118
- yield audio_id, {
119
- "audio_id": audio_id,
120
- **{feature: metadata[audio_id][feature] for feature in features},
121
- "audio": {"path": path, "bytes": audio_file.read()},
122
- }