File size: 6,649 Bytes
4ae7deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c974940
 
4ae7deb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from collections import defaultdict
import os
import json
import csv

import datasets

_NAME="malromur_asr"
_VERSION="1.0.0"
_AUDIO_EXTENSIONS=".flac"

_DESCRIPTION = """
The Málrómur corpus is an open source corpus of Icelandic voice samples.
"""

_CITATION = """
@inproceedings{steingrimsson2017malromur,
  title={Málrómur: A manually verified corpus of recorded Icelandic speech},
  author={Steingrímsson, Steinþór and Guðnason, Jón and Helgadóttir, Sigrún and Rögnvaldsson, Eiríkur},
  booktitle={Proceedings of the 21st Nordic Conference on Computational Linguistics},
  pages={237--240},
  year={2017}
}
"""

_HOMEPAGE = "https://clarin.is/en/resources/malromur/"

_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"

_BASE_DATA_DIR = "corpus/"
_METADATA_TRAIN =  os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv")
_METADATA_TEST  =  os.path.join(_BASE_DATA_DIR,"files", "metadata_test.tsv")
_METADATA_DEV   =  os.path.join(_BASE_DATA_DIR,"files",  "metadata_dev.tsv")

_TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths")
_TARS_TEST  = os.path.join(_BASE_DATA_DIR,"files", "tars_test.paths")
_TARS_DEV   = os.path.join(_BASE_DATA_DIR,"files",  "tars_dev.paths")

class MalromurAsrConfig(datasets.BuilderConfig):
    """BuilderConfig for The Málrómur Corpus"""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class MalromurAsr(datasets.GeneratorBasedBuilder):
    """The Málrómur Corpus"""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        MalromurAsrConfig(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16000),
                "speaker_id": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "age": datasets.Value("string"),
                "duration": datasets.Value("float32"),
                "normalized_text": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
    
        metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
        metadata_test=dl_manager.download_and_extract(_METADATA_TEST)
        metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)   
        
        tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
        tars_test=dl_manager.download_and_extract(_TARS_TEST)
        tars_dev=dl_manager.download_and_extract(_TARS_DEV)
        
        hash_tar_files=defaultdict(dict)
        with open(tars_train,'r') as f:
            hash_tar_files['train']=[path.replace('\n','') for path in f]

        with open(tars_test,'r') as f:
            hash_tar_files['test']=[path.replace('\n','') for path in f]
            
        with open(tars_dev,'r') as f:
            hash_tar_files['dev']=[path.replace('\n','') for path in f]
    
        hash_meta_paths={"train":metadata_train,"test":metadata_test,"dev":metadata_dev}
        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["train","dev","test"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["train"],
                    "metadata_paths": hash_meta_paths["train"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
                    "metadata_paths": hash_meta_paths["dev"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["test"],
                    "metadata_paths": hash_meta_paths["test"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):

        features = ["speaker_id","gender","age","duration","normalized_text"]
        
        with open(metadata_paths) as f:
            metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                #audio_id = audio_filename.split(os.sep)[-1].split(_AUDIO_EXTENSIONS)[0]
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                                        
                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }