File size: 1,578 Bytes
fac04be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07750e
 
fac04be
b07750e
 
fac04be
b07750e
 
 
 
40f79d3
fac04be
 
2af8cb6
 
fac04be
2af8cb6
 
1e121cc
 
cf661b6
1e121cc
 
 
 
2af8cb6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: dev
    path: data/dev-*
  - split: test
    path: data/test-*
dataset_info:
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: transcription
    dtype: string
  - name: translation
    dtype: string
  - name: file
    dtype: string
  splits:
  - name: train
    num_bytes: 6392221146.655
    num_examples: 17779
  - name: dev
    num_bytes: 786905707.92
    num_examples: 2997
  - name: test
    num_bytes: 4054213966.96
    num_examples: 14916
  download_size: 8220600841
  dataset_size: 11233340821.535
  license: mit
---
# Dataset Card for "ML2021_ASR_ST"
This dataset contains the audio recordings, the transcriptions, and the English translation of the transcriptions of the Machine Learning Course in 2021 at National Taiwan Univeristy.
This can be used for domain-specific and code-switching ASR/Speech-to-text translation.

If you find this dataset useful, please consider to cite the following paper:
```
@inproceedings{yang2024investigating,
  title={Investigating zero-shot generalizability on mandarin-english code-switched asr and speech-to-text translation of recent foundation models with self-supervision and weak supervision},
  author={Yang, Chih-Kai and Huang, Kuan-Po and Lu, Ke-Han and Kuan, Chun-Yi and Hsiao, Chi-Yuan and Lee, Hung-yi},
  booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)},
  pages={540--544},
  year={2024},
  organization={IEEE}
}
```