File size: 1,578 Bytes
fac04be b07750e fac04be b07750e fac04be b07750e 40f79d3 fac04be 2af8cb6 fac04be 2af8cb6 1e121cc cf661b6 1e121cc 2af8cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: dev
path: data/dev-*
- split: test
path: data/test-*
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: translation
dtype: string
- name: file
dtype: string
splits:
- name: train
num_bytes: 6392221146.655
num_examples: 17779
- name: dev
num_bytes: 786905707.92
num_examples: 2997
- name: test
num_bytes: 4054213966.96
num_examples: 14916
download_size: 8220600841
dataset_size: 11233340821.535
license: mit
---
# Dataset Card for "ML2021_ASR_ST"
This dataset contains the audio recordings, the transcriptions, and the English translation of the transcriptions of the Machine Learning Course in 2021 at National Taiwan Univeristy.
This can be used for domain-specific and code-switching ASR/Speech-to-text translation.
If you find this dataset useful, please consider to cite the following paper:
```
@inproceedings{yang2024investigating,
title={Investigating zero-shot generalizability on mandarin-english code-switched asr and speech-to-text translation of recent foundation models with self-supervision and weak supervision},
author={Yang, Chih-Kai and Huang, Kuan-Po and Lu, Ke-Han and Kuan, Chun-Yi and Hsiao, Chi-Yuan and Lee, Hung-yi},
booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)},
pages={540--544},
year={2024},
organization={IEEE}
}
``` |