Datasets:
Tasks:
Image Segmentation
Modalities:
Image
#!/usr/bin/python | |
# | |
# Cityscapes labels | |
# | |
from collections import namedtuple | |
#-------------------------------------------------------------------------------- | |
# Definitions | |
#-------------------------------------------------------------------------------- | |
# a label and all meta information | |
Label = namedtuple( 'Label' , [ | |
'name' , # The identifier of this label, e.g. 'car', 'person', ... . | |
# We use them to uniquely name a class | |
'id' , # An integer ID that is associated with this label. | |
# The IDs are used to represent the label in ground truth images | |
# An ID of -1 means that this label does not have an ID and thus | |
# is ignored when creating ground truth images (e.g. license plate). | |
'trainId' , # An integer ID that overwrites the ID above, when creating ground truth | |
# images for training. | |
# For training, multiple labels might have the same ID. Then, these labels | |
# are mapped to the same class in the ground truth images. For the inverse | |
# mapping, we use the label that is defined first in the list below. | |
# For example, mapping all void-type classes to the same ID in training, | |
# might make sense for some approaches. | |
'category' , # The name of the category that this label belongs to | |
'categoryId' , # The ID of this category. Used to create ground truth images | |
# on category level. | |
'hasInstances', # Whether this label distinguishes between single instances or not | |
'ignoreInEval', # Whether pixels having this class as ground truth label are ignored | |
# during evaluations or not | |
'color' , # The color of this label | |
] ) | |
#-------------------------------------------------------------------------------- | |
# A list of all labels | |
#-------------------------------------------------------------------------------- | |
# Please adapt the train IDs as appropriate for you approach. | |
# Note that you might want to ignore labels with ID 255 during training. | |
# Make sure to provide your results using the original IDs and not the training IDs. | |
# Note that many IDs are ignored in evaluation and thus you never need to predict these! | |
labels = [ | |
# name id trainId hasInstances ignoreInEval color | |
Label( 'unlabeled' , 0 , 0 , False , True , ( 0, 0, 0) ), | |
Label( 'ego vehicle' , 0 , 0 , False , True , ( 0, 0, 0) ), | |
Label( 'rectification border' , 0 , 0 , False , True , ( 0, 0, 0) ), | |
Label( 'out of roi' , 0 , 0 , False , True , ( 0, 0, 0) ), | |
Label( 'background' , 0 , 0 , False , False , ( 0, 0, 0) ), | |
Label( 'free' , 1 , 1 , False , False , (128, 64,128) ), | |
Label( '01' , 2 , 2 , True , False , ( 0, 0,142) ), | |
Label( '02' , 3 , 2 , True , False , ( 0, 0,142) ), | |
Label( '03' , 4 , 2 , True , False , ( 0, 0,142) ), | |
Label( '04' , 5 , 2 , True , False , ( 0, 0,142) ), | |
Label( '05' , 6 , 2 , True , False , ( 0, 0,142) ), | |
Label( '06' , 7 , 2 , True , False , ( 0, 0,142) ), | |
Label( '07' , 8 , 2 , True , False , ( 0, 0,142) ), | |
Label( '08' , 9 , 2 , True , False , ( 0, 0,142) ), | |
Label( '09' , 10 , 2 , True , False , ( 0, 0,142) ), | |
Label( '10' , 11 , 2 , True , False , ( 0, 0,142) ), | |
Label( '11' , 12 , 2 , True , False , ( 0, 0,142) ), | |
Label( '12' , 13 , 2 , True , False , ( 0, 0,142) ), | |
Label( '13' , 14 , 2 , True , False , ( 0, 0,142) ), | |
Label( '14' , 15 , 2 , True , False , ( 0, 0,142) ), | |
Label( '15' , 16 , 2 , True , False , ( 0, 0,142) ), | |
Label( '16' , 17 , 2 , True , False , ( 0, 0,142) ), | |
Label( '17' , 18 , 2 , True , False , ( 0, 0,142) ), | |
Label( '18' , 19 , 2 , True , False , ( 0, 0,142) ), | |
Label( '19' , 20 , 2 , True , False , ( 0, 0,142) ), | |
Label( '20' , 21 , 2 , True , False , ( 0, 0,142) ), | |
Label( '21' , 22 , 2 , True , False , ( 0, 0,142) ), | |
Label( '22' , 23 , 2 , True , False , ( 0, 0,142) ), | |
Label( '23' , 24 , 2 , True , False , ( 0, 0,142) ), | |
Label( '24' , 25 , 2 , True , False , ( 0, 0,142) ), | |
Label( '25' , 26 , 2 , True , False , ( 0, 0,142) ), | |
Label( '26' , 27 , 2 , True , False , ( 0, 0,142) ), | |
Label( '27' , 28 , 2 , True , False , ( 0, 0,142) ), | |
Label( '28' , 29 , 2 , True , False , ( 0, 0,142) ), | |
Label( '29' , 30 , 2 , True , False , ( 0, 0,142) ), | |
Label( '30' , 31 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '31' , 32 , 2 , True , False , ( 0, 0,142) ), | |
Label( '32' , 33 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '33' , 34 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '34' , 35 , 2 , True , False , ( 0, 0,142) ), | |
Label( '35' , 36 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '36' , 37 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '37' , 38 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '38' , 39 , 0 , True , False , ( 0, 0, 0) ), | |
Label( '39' , 40 , 2 , True , False , ( 0, 0,142) ), | |
Label( '40' , 41 , 2 , True , False , ( 0, 0,142) ), | |
Label( '41' , 42 , 2 , True , False , ( 0, 0,142) ), | |
Label( '42' , 43 , 2 , True , False , ( 0, 0,142) ), | |
] | |
#-------------------------------------------------------------------------------- | |
# Create dictionaries for a fast lookup | |
#-------------------------------------------------------------------------------- | |
name2label = { label.name : label for label in labels } | |
id2label = { label.id : label for label in labels } | |
trainId2label = { label.trainId : label for label in reversed(labels) } | |
category2labels = {} | |
for label in labels: | |
category = label.category | |
if category in category2labels: | |
category2labels[category].append(label) | |
else: | |
category2labels[category] = [label] | |
#-------------------------------------------------------------------------------- | |
# Assure single instance name | |
#-------------------------------------------------------------------------------- | |
def assureSingleInstanceName( name ): | |
# if the name is known, it is not a group | |
if name in name2label: | |
return name | |
# test if the name actually denotes a group | |
if not name.endswith("group"): | |
return name | |
# remove group | |
name = name[:-len("group")] | |
# test if the new name exists | |
if not name in name2label: | |
return None | |
# test if the new name denotes a label that actually has instances | |
if not name2label[name].hasInstances: | |
return None | |
# all good then | |
return name | |
#-------------------------------------------------------------------------------- | |
# Main for testing | |
#-------------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
# Print all the labels | |
print "List of cityscapes labels:" | |
print " {:>13} | {:>3} | {:>7} | {:>14} | {:>7} | {:>12} | {:>12}".format( 'name', 'id', 'trainId', 'category', 'categoryId', 'hasInstances', 'ignoreInEval' ) | |
print " " + ('-' * 88) | |
for label in labels: | |
print " {:>13} | {:>3} | {:>7} | {:>14} | {:>7} | {:>12} | {:>12}".format( label.name, label.id, label.trainId, label.category, label.categoryId, label.hasInstances, label.ignoreInEval ) | |
print "Example usages:" | |
# Map from name to label | |
name = 'car' | |
id = name2label[name].id | |
print "ID of label '{name}': {id}".format( name=name, id=id ) | |
# Map from ID to label | |
category = id2label[id].category | |
print "Category of label with ID '{id}': {category}".format( id=id, category=category ) | |
# Map from trainID to label | |
trainId = 0 | |
name = trainId2label[trainId].name | |
print "Name of label with trainID '{id}': {name}".format( id=trainId, name=name ) | |
# Print list of label names for each train ID | |
print "Labels for train IDs: ", trainId2label.keys() | |
print " ", | |
for trainId in trainId2label: | |
print trainId2label[trainId].name + "," , | |