kitkatdafu
commited on
Commit
•
84c740d
1
Parent(s):
37b44d4
Upload jester_embedding.py
Browse files- jester_embedding.py +92 -0
jester_embedding.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import datasets
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
|
5 |
+
_CITATION = "N/A"
|
6 |
+
_DESCRIPTION = "Embeddings for the jokes in Jester jokes dataset"
|
7 |
+
_HOMEPAGE = "N/A"
|
8 |
+
_LICENSE = "apache-2.0"
|
9 |
+
|
10 |
+
_URLS = {
|
11 |
+
"mistral": "jester-salesforce-sfr-embedding-mistral.pt",
|
12 |
+
"instructor-xl": "jester-hkunlp-instructor-xl.pt",
|
13 |
+
"all-MiniLM-L6-v2": "jester-sentence-transformers-all-MiniLM-L6-v2.pt",
|
14 |
+
"all-mpnet-base-v2": "jester-sentence-transformers-all-mpnet-base-v2.pt",
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
_DIMS = {
|
19 |
+
"mistral": 4096,
|
20 |
+
"instructor-xl": 768,
|
21 |
+
"all-MiniLM-L6-v2": 384,
|
22 |
+
"all-mpnet-base-v2": 768,
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
class JesterEmbedding(datasets.GeneratorBasedBuilder):
|
27 |
+
|
28 |
+
VERSION = datasets.Version("0.0.1")
|
29 |
+
|
30 |
+
BUILDER_CONFIGS = [
|
31 |
+
datasets.BuilderConfig(name="mistral", version=VERSION, description="SFR-Embedding by Salesforce Research."),
|
32 |
+
datasets.BuilderConfig(name="instructor-xl", version=VERSION, description="Instructor embedding"),
|
33 |
+
datasets.BuilderConfig(name="all-MiniLM-L6-v2", version=VERSION, description="All-round model embedding tuned for many use-cases"),
|
34 |
+
datasets.BuilderConfig(name="all-mpnet-base-v2", version=VERSION, description="All-round model embedding tuned for many use-cases"),
|
35 |
+
]
|
36 |
+
|
37 |
+
DEFAULT_CONFIG_NAME = "mistral" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
features = datasets.Features({"x": datasets.Array2D(shape=_DIMS[self.config.name], dtype="float32")})
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
description=_DESCRIPTION,
|
43 |
+
features=features,
|
44 |
+
homepage=_HOMEPAGE,
|
45 |
+
license=_LICENSE,
|
46 |
+
citation=_CITATION,
|
47 |
+
)
|
48 |
+
|
49 |
+
def _split_generators(self, dl_manager):
|
50 |
+
urls = _URLS[self.config.name]
|
51 |
+
data_dir = dl_manager.download_and_extract(urls)
|
52 |
+
return [
|
53 |
+
datasets.SplitGenerator(
|
54 |
+
name=datasets.Split.TRAIN,
|
55 |
+
# These kwargs will be passed to _generate_examples
|
56 |
+
gen_kwargs={
|
57 |
+
"filepath": data_dir,
|
58 |
+
"split": "train",
|
59 |
+
},
|
60 |
+
),
|
61 |
+
datasets.SplitGenerator(
|
62 |
+
name=datasets.Split.VALIDATION,
|
63 |
+
# These kwargs will be passed to _generate_examples
|
64 |
+
gen_kwargs={
|
65 |
+
"filepath": data_dir,
|
66 |
+
"split": "dev",
|
67 |
+
},
|
68 |
+
),
|
69 |
+
datasets.SplitGenerator(
|
70 |
+
name=datasets.Split.TEST,
|
71 |
+
# These kwargs will be passed to _generate_examples
|
72 |
+
gen_kwargs={
|
73 |
+
"filepath": data_dir,
|
74 |
+
"split": "test"
|
75 |
+
},
|
76 |
+
),
|
77 |
+
]
|
78 |
+
|
79 |
+
def _generate_examples(self, filepath, split):
|
80 |
+
embeddings = torch.load(f=filepath, map_location="cpu")
|
81 |
+
train, test = train_test_split(embeddings, test_size=0.2, random_state=42)
|
82 |
+
train, val = train_test_split(train, test_size=0.2, random_state=42)
|
83 |
+
|
84 |
+
if split == "train":
|
85 |
+
for _id, x in enumerate(train):
|
86 |
+
yield _id, {"x": x}
|
87 |
+
elif split == "test":
|
88 |
+
for _id, x in enumerate(test):
|
89 |
+
yield _id, {"x": x}
|
90 |
+
else:
|
91 |
+
for _id, x in enumerate(val):
|
92 |
+
yield _id, {"x": x}
|