|
import pandas as pd |
|
import datasets |
|
from sklearn.model_selection import train_test_split |
|
|
|
_CITATION = "N/A" |
|
_DESCRIPTION = "Embeddings for the jokes in Jester jokes dataset" |
|
_HOMEPAGE = "N/A" |
|
_LICENSE = "apache-2.0" |
|
|
|
_URLS = { |
|
"mistral": "./jester-salesforce-sfr-embedding-mistral.parquet", |
|
"instructor-xl": "./jester-hkunlp-instructor-xl.parquet", |
|
"all-MiniLM-L6-v2": "./jester-sentence-transformers-all-MiniLM-L6-v2.parquet", |
|
"all-mpnet-base-v2": "./jester-sentence-transformers-all-mpnet-base-v2.parquet", |
|
} |
|
|
|
|
|
_DIMS = { |
|
"mistral": 4096, |
|
"instructor-xl": 768, |
|
"all-MiniLM-L6-v2": 384, |
|
"all-mpnet-base-v2": 768, |
|
} |
|
|
|
|
|
class JesterEmbedding(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="mistral", version=VERSION, description="SFR-Embedding by Salesforce Research."), |
|
datasets.BuilderConfig(name="instructor-xl", version=VERSION, description="Instructor embedding"), |
|
datasets.BuilderConfig(name="all-MiniLM-L6-v2", version=VERSION, description="All-round model embedding tuned for many use-cases"), |
|
datasets.BuilderConfig(name="all-mpnet-base-v2", version=VERSION, description="All-round model embedding tuned for many use-cases"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "mistral" |
|
|
|
def _info(self): |
|
features = datasets.Features({"x": datasets.Array2D(shape=(1, _DIMS[self.config.name]), dtype="float32")}) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
embeddings = pd.read_parquet(filepath).values |
|
for _id, x in enumerate(embeddings): |
|
yield _id, {"x": x.reshape(1, -1)} |
|
|