updatinf data files
Browse files- .ipynb_checkpoints/large-sinhala-asr-dataset-checkpoint.py +146 -0
- large-sinhala-asr-dataset.py +11 -24
- test.tsv +2 -2
- train.tsv +2 -2
.ipynb_checkpoints/large-sinhala-asr-dataset-checkpoint.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import string
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
6 |
+
|
7 |
+
|
8 |
+
_DATA_URL = "https://www.openslr.org/resources/52/asr_sinhala_{}.zip"
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{kjartansson-etal-sltu2018,
|
12 |
+
title = {{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}},
|
13 |
+
author = {Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha},
|
14 |
+
booktitle = {Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU)},
|
15 |
+
year = {2018},
|
16 |
+
address = {Gurugram, India},
|
17 |
+
month = aug,
|
18 |
+
pages = {52--55},
|
19 |
+
URL = {http://dx.doi.org/10.21437/SLTU.2018-11}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
This data set contains ~185K transcribed audio data for Sinhala. The data set consists of wave files, and a TSV file. The file utt_spk_text.tsv contains a FileID, anonymized UserID and the transcription of audio in the file.
|
25 |
+
The data set has been manually quality checked, but there might still be errors.
|
26 |
+
|
27 |
+
See LICENSE.txt file for license information.
|
28 |
+
|
29 |
+
Copyright 2016, 2017, 2018 Google, Inc.
|
30 |
+
"""
|
31 |
+
|
32 |
+
_HOMEPAGE = "https://www.openslr.org/52/"
|
33 |
+
|
34 |
+
_LICENSE = "https://www.openslr.org/resources/52/LICENSE"
|
35 |
+
|
36 |
+
_LANGUAGES = {
|
37 |
+
"si": {
|
38 |
+
"Language": "Sinhala",
|
39 |
+
"Date": "2018",
|
40 |
+
},
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
class LargeASRConfig(datasets.BuilderConfig):
|
45 |
+
"""BuilderConfig for LargeASR."""
|
46 |
+
|
47 |
+
def __init__(self, name, **kwargs):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
data_dir: `string`, the path to the folder containing the files in the
|
51 |
+
downloaded .tar
|
52 |
+
citation: `string`, citation for the data set
|
53 |
+
url: `string`, url for information about the data set
|
54 |
+
**kwargs: keyword arguments forwarded to super.
|
55 |
+
"""
|
56 |
+
self.language = kwargs.pop("language", None)
|
57 |
+
self.date_of_snapshot = kwargs.pop("date", None)
|
58 |
+
description = f"Large Sinhala dataset in {self.language} of {self.date_of_snapshot}."
|
59 |
+
super(LargeASRConfig, self).__init__(
|
60 |
+
name=name, version=datasets.Version("1.0.0", ""), description=description, **kwargs
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
class LargeASR(datasets.GeneratorBasedBuilder):
|
65 |
+
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
LargeASRConfig(
|
68 |
+
name=lang_id,
|
69 |
+
language=_LANGUAGES[lang_id]["Language"],
|
70 |
+
date=_LANGUAGES[lang_id]["Date"],
|
71 |
+
)
|
72 |
+
for lang_id in _LANGUAGES.keys()
|
73 |
+
]
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
features = datasets.Features(
|
77 |
+
{
|
78 |
+
"filename": datasets.Value("string"),
|
79 |
+
"x": datasets.Value("string"),
|
80 |
+
"sentence": datasets.Value("string"),
|
81 |
+
"file": datasets.Value("string"),
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
return datasets.DatasetInfo(
|
86 |
+
description=_DESCRIPTION,
|
87 |
+
features=features,
|
88 |
+
supervised_keys=None,
|
89 |
+
homepage=_HOMEPAGE,
|
90 |
+
license=_LICENSE,
|
91 |
+
citation=_CITATION,
|
92 |
+
task_templates=[
|
93 |
+
AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="sentence")
|
94 |
+
],
|
95 |
+
)
|
96 |
+
|
97 |
+
def _split_generators(self, dl_manager):
|
98 |
+
"""Returns SplitGenerators."""
|
99 |
+
data_urls = [_DATA_URL.format(i) for i in (string.digits + string.ascii_lowercase[:6])]
|
100 |
+
dl_path = dl_manager.download_and_extract(data_urls)
|
101 |
+
print(dl_path)
|
102 |
+
abs_path_to_data = os.path.join('./')
|
103 |
+
abs_path_to_clips = os.path.join(dl_path)
|
104 |
+
|
105 |
+
return [
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name=datasets.Split.TRAIN,
|
108 |
+
gen_kwargs={
|
109 |
+
"filepath": os.path.join(abs_path_to_data, "train.tsv"),
|
110 |
+
"path_to_clips": abs_path_to_clips,
|
111 |
+
},
|
112 |
+
),
|
113 |
+
datasets.SplitGenerator(
|
114 |
+
name=datasets.Split.TEST,
|
115 |
+
gen_kwargs={
|
116 |
+
"filepath": os.path.join(abs_path_to_data, "test.tsv"),
|
117 |
+
"path_to_clips": abs_path_to_clips,
|
118 |
+
},
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
def _generate_examples(self, filepath, path_to_clips):
|
123 |
+
"""Yields examples."""
|
124 |
+
data_fields = list(self._info().features.keys())
|
125 |
+
path_idx = data_fields.index("file")
|
126 |
+
|
127 |
+
with open(filepath, encoding="utf-8") as f:
|
128 |
+
lines = f.readlines()
|
129 |
+
headline = lines[0]
|
130 |
+
|
131 |
+
column_names = headline.strip().split("\t")
|
132 |
+
assert (
|
133 |
+
column_names == data_fields
|
134 |
+
), f"The file should have {data_fields} as column names, but has {column_names}"
|
135 |
+
|
136 |
+
for id_, line in enumerate(lines[1:]):
|
137 |
+
field_values = line.strip().split("\t")
|
138 |
+
|
139 |
+
# set absolute path for wav audio file
|
140 |
+
field_values[path_idx] = os.path.join(path_to_clips, field_values[path_idx])
|
141 |
+
|
142 |
+
# if data is incomplete, fill with empty values
|
143 |
+
if len(field_values) < len(data_fields):
|
144 |
+
field_values += (len(data_fields) - len(field_values)) * ["''"]
|
145 |
+
|
146 |
+
yield id_, {key: value for key, value in zip(data_fields, field_values)}
|
large-sinhala-asr-dataset.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
import datasets
|
4 |
from datasets.tasks import AutomaticSpeechRecognition
|
5 |
|
6 |
|
7 |
-
_DATA_URL = ".
|
8 |
|
9 |
_CITATION = """\
|
10 |
@inproceedings{kjartansson-etal-sltu2018,
|
@@ -20,7 +21,7 @@ _CITATION = """\
|
|
20 |
"""
|
21 |
|
22 |
_DESCRIPTION = """\
|
23 |
-
This data set contains transcribed audio data for Sinhala. The data set consists of wave files, and a TSV file. The file utt_spk_text.tsv contains a FileID, anonymized UserID and the transcription of audio in the file.
|
24 |
The data set has been manually quality checked, but there might still be errors.
|
25 |
|
26 |
See LICENSE.txt file for license information.
|
@@ -35,12 +36,7 @@ _LICENSE = "https://www.openslr.org/resources/52/LICENSE"
|
|
35 |
_LANGUAGES = {
|
36 |
"si": {
|
37 |
"Language": "Sinhala",
|
38 |
-
"Date": "
|
39 |
-
"Size": "39 MB",
|
40 |
-
"Version": "si_1h_2020-12-11",
|
41 |
-
"Validated_Hr_Total": 0.05,
|
42 |
-
"Overall_Hr_Total": 1,
|
43 |
-
"Number_Of_Voice": 14,
|
44 |
},
|
45 |
}
|
46 |
|
@@ -48,7 +44,7 @@ _LANGUAGES = {
|
|
48 |
class LargeASRConfig(datasets.BuilderConfig):
|
49 |
"""BuilderConfig for LargeASR."""
|
50 |
|
51 |
-
def __init__(self, name,
|
52 |
"""
|
53 |
Args:
|
54 |
data_dir: `string`, the path to the folder containing the files in the
|
@@ -57,14 +53,9 @@ class LargeASRConfig(datasets.BuilderConfig):
|
|
57 |
url: `string`, url for information about the data set
|
58 |
**kwargs: keyword arguments forwarded to super.
|
59 |
"""
|
60 |
-
self.sub_version = sub_version
|
61 |
self.language = kwargs.pop("language", None)
|
62 |
self.date_of_snapshot = kwargs.pop("date", None)
|
63 |
-
self.
|
64 |
-
self.validated_hr_total = kwargs.pop("val_hrs", None)
|
65 |
-
self.total_hr_total = kwargs.pop("total_hrs", None)
|
66 |
-
self.num_of_voice = kwargs.pop("num_of_voice", None)
|
67 |
-
description = f"Large Sinhala dataset in {self.language} version {self.sub_version} of {self.date_of_snapshot}. The dataset comprises {self.validated_hr_total} of validated transcribed speech data from {self.num_of_voice} speakers. The dataset has a size of {self.size}"
|
68 |
super(LargeASRConfig, self).__init__(
|
69 |
name=name, version=datasets.Version("1.0.0", ""), description=description, **kwargs
|
70 |
)
|
@@ -76,12 +67,7 @@ class LargeASR(datasets.GeneratorBasedBuilder):
|
|
76 |
LargeASRConfig(
|
77 |
name=lang_id,
|
78 |
language=_LANGUAGES[lang_id]["Language"],
|
79 |
-
sub_version=_LANGUAGES[lang_id]["Version"],
|
80 |
date=_LANGUAGES[lang_id]["Date"],
|
81 |
-
size=_LANGUAGES[lang_id]["Size"],
|
82 |
-
val_hrs=_LANGUAGES[lang_id]["Validated_Hr_Total"],
|
83 |
-
total_hrs=_LANGUAGES[lang_id]["Overall_Hr_Total"],
|
84 |
-
num_of_voice=_LANGUAGES[lang_id]["Number_Of_Voice"],
|
85 |
)
|
86 |
for lang_id in _LANGUAGES.keys()
|
87 |
]
|
@@ -92,7 +78,6 @@ class LargeASR(datasets.GeneratorBasedBuilder):
|
|
92 |
"filename": datasets.Value("string"),
|
93 |
"x": datasets.Value("string"),
|
94 |
"sentence": datasets.Value("string"),
|
95 |
-
"full": datasets.Value("string"),
|
96 |
"file": datasets.Value("string"),
|
97 |
}
|
98 |
)
|
@@ -111,9 +96,11 @@ class LargeASR(datasets.GeneratorBasedBuilder):
|
|
111 |
|
112 |
def _split_generators(self, dl_manager):
|
113 |
"""Returns SplitGenerators."""
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
|
118 |
return [
|
119 |
datasets.SplitGenerator(
|
|
|
1 |
import os
|
2 |
+
import string
|
3 |
|
4 |
import datasets
|
5 |
from datasets.tasks import AutomaticSpeechRecognition
|
6 |
|
7 |
|
8 |
+
_DATA_URL = "https://www.openslr.org/resources/52/asr_sinhala_{}.zip"
|
9 |
|
10 |
_CITATION = """\
|
11 |
@inproceedings{kjartansson-etal-sltu2018,
|
|
|
21 |
"""
|
22 |
|
23 |
_DESCRIPTION = """\
|
24 |
+
This data set contains ~185K transcribed audio data for Sinhala. The data set consists of wave files, and a TSV file. The file utt_spk_text.tsv contains a FileID, anonymized UserID and the transcription of audio in the file.
|
25 |
The data set has been manually quality checked, but there might still be errors.
|
26 |
|
27 |
See LICENSE.txt file for license information.
|
|
|
36 |
_LANGUAGES = {
|
37 |
"si": {
|
38 |
"Language": "Sinhala",
|
39 |
+
"Date": "2018",
|
|
|
|
|
|
|
|
|
|
|
40 |
},
|
41 |
}
|
42 |
|
|
|
44 |
class LargeASRConfig(datasets.BuilderConfig):
|
45 |
"""BuilderConfig for LargeASR."""
|
46 |
|
47 |
+
def __init__(self, name, **kwargs):
|
48 |
"""
|
49 |
Args:
|
50 |
data_dir: `string`, the path to the folder containing the files in the
|
|
|
53 |
url: `string`, url for information about the data set
|
54 |
**kwargs: keyword arguments forwarded to super.
|
55 |
"""
|
|
|
56 |
self.language = kwargs.pop("language", None)
|
57 |
self.date_of_snapshot = kwargs.pop("date", None)
|
58 |
+
description = f"Large Sinhala dataset in {self.language} of {self.date_of_snapshot}."
|
|
|
|
|
|
|
|
|
59 |
super(LargeASRConfig, self).__init__(
|
60 |
name=name, version=datasets.Version("1.0.0", ""), description=description, **kwargs
|
61 |
)
|
|
|
67 |
LargeASRConfig(
|
68 |
name=lang_id,
|
69 |
language=_LANGUAGES[lang_id]["Language"],
|
|
|
70 |
date=_LANGUAGES[lang_id]["Date"],
|
|
|
|
|
|
|
|
|
71 |
)
|
72 |
for lang_id in _LANGUAGES.keys()
|
73 |
]
|
|
|
78 |
"filename": datasets.Value("string"),
|
79 |
"x": datasets.Value("string"),
|
80 |
"sentence": datasets.Value("string"),
|
|
|
81 |
"file": datasets.Value("string"),
|
82 |
}
|
83 |
)
|
|
|
96 |
|
97 |
def _split_generators(self, dl_manager):
|
98 |
"""Returns SplitGenerators."""
|
99 |
+
data_urls = [_DATA_URL.format(i) for i in (string.digits + string.ascii_lowercase[:6])]
|
100 |
+
dl_path = dl_manager.download_and_extract(data_urls)
|
101 |
+
print(dl_path)
|
102 |
+
abs_path_to_data = os.path.join('./')
|
103 |
+
abs_path_to_clips = os.path.join(dl_path)
|
104 |
|
105 |
return [
|
106 |
datasets.SplitGenerator(
|
test.tsv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aff9fa04dbaa71e7605ca1cca8e7550e8d1aac450e4671f972bc6e9c656b3eb
|
3 |
+
size 2886835
|
train.tsv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d95b9cf6f910d988454486a7feac59f935ee85efb5849d1f442d5feb6ab429f
|
3 |
+
size 16324488
|