keremberke commited on
Commit
08e0f81
·
1 Parent(s): ae2231c

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # undefined > raw-images_640by640
2
+ https://public.roboflow.ai/object-detection/undefined
3
+
4
+ Provided by undefined
5
+ License: CC BY 4.0
6
+
7
+ This project is trying to create an efficient computer or machine vision model to detect different kinds of construction equipment in construction sites and we are starting with **three classes which are excavators, trucks, and wheel loaders.**
8
+
9
+ The **dataset is provided by [Mohamed Sabek](https://www.linkedin.com/in/mohammadsabek/)**, a Spring 2022 Master of Science graduate from Arizona State University in [Construction Management and Technology](https://graduate.engineering.asu.edu/construction-management/).
10
+
11
+ The raw images (v1) contains:
12
+ 1. 1,532 annotated examples of "excavators"
13
+ 2. 1,269 annotated examples of "dump truck"
14
+ 3. 1,080 annotated examples of "wheel loader"
15
+
16
+ **Note:** versions 2 and 3 (v2 and v3) contain the raw images resized at 416 by 416 (stretch to) and 640 by 640 (stretch to) without any augmentations.
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+ - Manufacturing
8
+ - Construction
9
+ - Machinery
10
+ ---
11
+
12
+ <div align="center">
13
+ <img width="640" alt="keremberke/excavator-detector" src="https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/thumbnail.jpg">
14
+ </div>
15
+
16
+ ### Dataset Labels
17
+
18
+ ```
19
+ ['excavators', 'dump truck', 'wheel loader']
20
+ ```
21
+
22
+
23
+ ### Number of Images
24
+
25
+ ```json
26
+ {'test': 144, 'train': 2245, 'valid': 267}
27
+ ```
28
+
29
+
30
+ ### How to Use
31
+
32
+ - Install [datasets](https://pypi.org/project/datasets/):
33
+
34
+ ```bash
35
+ pip install datasets
36
+ ```
37
+
38
+ - Load the dataset:
39
+
40
+ ```python
41
+ from datasets import load_dataset
42
+
43
+ ds = load_dataset("keremberke/excavator-detector", name="full")
44
+ example = ds['train'][0]
45
+ ```
46
+
47
+ ### Roboflow Dataset Page
48
+ [https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0/dataset/3](https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0/dataset/3?ref=roboflow2huggingface)
49
+
50
+ ### Citation
51
+
52
+ ```
53
+ @misc{ excavators-cwlh0_dataset,
54
+ title = { Excavators Dataset },
55
+ type = { Open Source Dataset },
56
+ author = { Mohamed Sabek },
57
+ howpublished = { \\url{ https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0 } },
58
+ url = { https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0 },
59
+ journal = { Roboflow Universe },
60
+ publisher = { Roboflow },
61
+ year = { 2022 },
62
+ month = { nov },
63
+ note = { visited on 2023-01-16 },
64
+ }
65
+ ```
66
+
67
+ ### License
68
+ CC BY 4.0
69
+
70
+ ### Dataset Summary
71
+ This dataset was exported via roboflow.ai on April 4, 2022 at 8:56 AM GMT
72
+
73
+ It includes 2656 images.
74
+ Excavator are annotated in COCO format.
75
+
76
+ The following pre-processing was applied to each image:
77
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
78
+ * Resize to 640x640 (Stretch)
79
+
80
+ No image augmentation techniques were applied.
81
+
82
+
83
+
README.roboflow.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Excavators - v3 raw-images_640by640
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.ai on April 4, 2022 at 8:56 AM GMT
6
+
7
+ It includes 2656 images.
8
+ Excavator are annotated in COCO format.
9
+
10
+ The following pre-processing was applied to each image:
11
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
12
+ * Resize to 640x640 (Stretch)
13
+
14
+ No image augmentation techniques were applied.
15
+
16
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a533021ec10e6a5c044915fa21645c21d47be955eb04740d0ee7b8d602284462
3
+ size 10272719
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d7d0d67bea2f3a16359e8d6c171a4e8b5948f34f9aff79cf047f150dfce01f
3
+ size 163840131
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2545a0a9aa81822f2f0301800305f94a2d2d0b0467f2a7ed5f4aaf7f03644079
3
+ size 160754
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b92befa2c6c74e08dc60b2cdadb091375813aa656454d43d0d35adc98b55a3
3
+ size 18899003
excavator-detector.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0/dataset/3"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ excavators-cwlh0_dataset,
12
+ title = { Excavators Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { Mohamed Sabek },
15
+ howpublished = { \\url{ https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0 } },
16
+ url = { https://universe.roboflow.com/mohamed-sabek-6zmr6/excavators-cwlh0 },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2022 },
20
+ month = { nov },
21
+ note = { visited on 2023-01-16 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['excavators', 'dump truck', 'wheel loader']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class EXCAVATORDETECTORConfig(datasets.BuilderConfig):
29
+ """Builder Config for excavator-detector"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for excavator-detector.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(EXCAVATORDETECTORConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class EXCAVATORDETECTOR(datasets.GeneratorBasedBuilder):
44
+ """excavator-detector object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ EXCAVATORDETECTORConfig(
49
+ name="full",
50
+ description="Full version of excavator-detector dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ EXCAVATORDETECTORConfig(
58
+ name="mini",
59
+ description="Mini version of excavator-detector dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/keremberke/excavator-detector/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"test": 144, "train": 2245, "valid": 267}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: 784b5c44cc393edda704efc11c391f23e2d6d8af02f728d5f62a4d13da0772bd
  • Pointer size: 131 Bytes
  • Size of remote file: 168 kB