keremberke commited on
Commit
f016e54
·
1 Parent(s): cdd31f6

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blood Cell Detection > 2022-10-27 4:01pm
2
+ https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu
3
+
4
+ Provided by a Roboflow user
5
+ License: Public Domain
6
+
7
+ # Overview
8
+
9
+ This is a dataset of blood cells photos, originally open sourced by [cosmicad](https://github.com/cosmicad/dataset) and [akshaylambda](https://github.com/akshaylamba/all_CELL_data).
10
+
11
+ There are 364 images across three classes: `WBC` (white blood cells), `RBC` (red blood cells), and `Platelets`. There are 4888 labels across 3 classes (and 0 null examples).
12
+
13
+ Here's a class count from Roboflow's Dataset Health Check:
14
+
15
+ ![BCCD health](https://i.imgur.com/BVopW9p.png)
16
+
17
+ And here's an example image:
18
+
19
+ ![Blood Cell Example](https://i.imgur.com/QwyX2aD.png)
20
+
21
+ `Fork` this dataset (upper right hand corner) to receive the raw images, or (to save space) grab the 500x500 export.
22
+
23
+ # Use Cases
24
+
25
+ This is a small scale object detection dataset, commonly used to assess model performance. It's a first example of medical imaging capabilities.
26
+
27
+ # Using this Dataset
28
+
29
+ We're releasing the data as public domain. Feel free to use it for any purpose.
30
+
31
+ It's not required to provide attribution, but it'd be nice! :)
32
+
33
+ # About Roboflow
34
+
35
+ [Roboflow](https://roboflow.ai) makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.
36
+
37
+ Developers reduce 50% of their boilerplate code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.
38
+
39
+ #### [![Roboflow Workmark](https://i.imgur.com/WHFqYSJ.png =350x)](https://roboflow.ai)
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ ---
7
+
8
+ ### Roboflow Dataset Page
9
+ https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu/dataset/3
10
+
11
+ ### Dataset Labels
12
+
13
+ ```
14
+ ['platelets', 'rbc', 'wbc']
15
+ ```
16
+
17
+ ### Citation
18
+
19
+ ```
20
+ @misc{ blood-cell-detection-1ekwu_dataset,
21
+ title = { Blood Cell Detection Dataset },
22
+ type = { Open Source Dataset },
23
+ author = { Team Roboflow },
24
+ howpublished = { \\url{ https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu } },
25
+ url = { https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu },
26
+ journal = { Roboflow Universe },
27
+ publisher = { Roboflow },
28
+ year = { 2022 },
29
+ month = { nov },
30
+ note = { visited on 2022-12-31 },
31
+ }
32
+ ```
33
+
34
+ ### License
35
+ Public Domain
36
+
37
+ ### Dataset Summary
38
+ This dataset was exported via roboflow.com on November 4, 2022 at 7:46 PM GMT
39
+
40
+ Roboflow is an end-to-end computer vision platform that helps you
41
+ * collaborate with your team on computer vision projects
42
+ * collect & organize images
43
+ * understand unstructured image data
44
+ * annotate, and create datasets
45
+ * export, train, and deploy computer vision models
46
+ * use active learning to improve your dataset over time
47
+
48
+ It includes 364 images.
49
+ Cells are annotated in COCO format.
50
+
51
+ The following pre-processing was applied to each image:
52
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
53
+ * Resize to 416x416 (Stretch)
54
+
55
+ No image augmentation techniques were applied.
56
+
57
+
58
+
README.roboflow.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Blood Cell Detection - v3 2022-10-27 4:01pm
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on November 4, 2022 at 7:46 PM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ It includes 364 images.
16
+ Cells are annotated in COCO format.
17
+
18
+ The following pre-processing was applied to each image:
19
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
20
+ * Resize to 416x416 (Stretch)
21
+
22
+ No image augmentation techniques were applied.
23
+
24
+
blood-cell-object-detection.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu/dataset/3"
9
+ _LICENSE = "Public Domain"
10
+ _CITATION = """\
11
+ @misc{ blood-cell-detection-1ekwu_dataset,
12
+ title = { Blood Cell Detection Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { Team Roboflow },
15
+ howpublished = { \\url{ https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu } },
16
+ url = { https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2022 },
20
+ month = { nov },
21
+ note = { visited on 2022-12-31 },
22
+ }
23
+ """
24
+ _URLS = {
25
+ "train": "https://huggingface.co/datasets/keremberke/blood-cell-object-detection/resolve/main/data/train.zip",
26
+ "validation": "https://huggingface.co/datasets/keremberke/blood-cell-object-detection/resolve/main/data/valid.zip",
27
+ "test": "https://huggingface.co/datasets/keremberke/blood-cell-object-detection/resolve/main/data/test.zip",
28
+ }
29
+
30
+ _CATEGORIES = ['platelets', 'rbc', 'wbc']
31
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
32
+
33
+
34
+ class BLOODCELLOBJECTDETECTION(datasets.GeneratorBasedBuilder):
35
+ VERSION = datasets.Version("1.0.0")
36
+
37
+ def _info(self):
38
+ features = datasets.Features(
39
+ {
40
+ "image_id": datasets.Value("int64"),
41
+ "image": datasets.Image(),
42
+ "width": datasets.Value("int32"),
43
+ "height": datasets.Value("int32"),
44
+ "objects": datasets.Sequence(
45
+ {
46
+ "id": datasets.Value("int64"),
47
+ "area": datasets.Value("int64"),
48
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
49
+ "category": datasets.ClassLabel(names=_CATEGORIES),
50
+ }
51
+ ),
52
+ }
53
+ )
54
+ return datasets.DatasetInfo(
55
+ features=features,
56
+ homepage=_HOMEPAGE,
57
+ citation=_CITATION,
58
+ license=_LICENSE,
59
+ )
60
+
61
+ def _split_generators(self, dl_manager):
62
+ data_files = dl_manager.download_and_extract(_URLS)
63
+ return [
64
+ datasets.SplitGenerator(
65
+ name=datasets.Split.TRAIN,
66
+ gen_kwargs={
67
+ "folder_dir": data_files["train"],
68
+ },
69
+ ),
70
+ datasets.SplitGenerator(
71
+ name=datasets.Split.VALIDATION,
72
+ gen_kwargs={
73
+ "folder_dir": data_files["validation"],
74
+ },
75
+ ),
76
+ datasets.SplitGenerator(
77
+ name=datasets.Split.TEST,
78
+ gen_kwargs={
79
+ "folder_dir": data_files["test"],
80
+ },
81
+ ),
82
+ ]
83
+
84
+ def _generate_examples(self, folder_dir):
85
+ def process_annot(annot, category_id_to_category):
86
+ return {
87
+ "id": annot["id"],
88
+ "area": annot["area"],
89
+ "bbox": annot["bbox"],
90
+ "category": category_id_to_category[annot["category_id"]],
91
+ }
92
+
93
+ image_id_to_image = {}
94
+ idx = 0
95
+
96
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
97
+ with open(annotation_filepath, "r") as f:
98
+ annotations = json.load(f)
99
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
100
+ image_id_to_annotations = collections.defaultdict(list)
101
+ for annot in annotations["annotations"]:
102
+ image_id_to_annotations[annot["image_id"]].append(annot)
103
+ image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
104
+
105
+ for filename in os.listdir(folder_dir):
106
+ filepath = os.path.join(folder_dir, filename)
107
+ if filename in image_id_to_image:
108
+ image = image_id_to_image[filename]
109
+ objects = [
110
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
111
+ ]
112
+ with open(filepath, "rb") as f:
113
+ image_bytes = f.read()
114
+ yield idx, {
115
+ "image_id": image["id"],
116
+ "image": {"path": filepath, "bytes": image_bytes},
117
+ "width": image["width"],
118
+ "height": image["height"],
119
+ "objects": objects,
120
+ }
121
+ idx += 1
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2239ef3b1d9574edd0dc7b4dd2b12bcab2cb6c7fad69d750b90de74095af6e1
3
+ size 471118
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42081183d4a75b2f6b43ab7b572650dd924afb96c21d7f1468ad29feca50e59e
3
+ size 3361545
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba16c63bfa5bc08eebd2ef0f8eea7d8b5acdbbddc55ad3d07631c958238359e1
3
+ size 959009