text
stringlengths
75
104k
code_tokens
list
avg_line_len
float64
7.91
980
score
float64
0
0.18
def drop_index(self, raw): """ Executes a drop index command. { "op" : "c", "ns" : "testdb.$cmd", "o" : { "dropIndexes" : "testcoll", "index" : "nuie_1" } } """ dbname = raw['ns'].split('.', 1)[0] collname = raw['o']['dropIndexes'] self.dest[dbname][collname].drop_index(raw['o']['index'])
[ "def", "drop_index", "(", "self", ",", "raw", ")", ":", "dbname", "=", "raw", "[", "'ns'", "]", ".", "split", "(", "'.'", ",", "1", ")", "[", "0", "]", "collname", "=", "raw", "[", "'o'", "]", "[", "'dropIndexes'", "]", "self", ".", "dest", "[", "dbname", "]", "[", "collname", "]", ".", "drop_index", "(", "raw", "[", "'o'", "]", "[", "'index'", "]", ")" ]
34.181818
0.010363
def formatted_completion_sig(completion): """Regenerate signature for methods. Return just the name otherwise""" f_result = completion["name"] if is_basic_type(completion): # It's a raw type return f_result elif len(completion["typeInfo"]["paramSections"]) == 0: return f_result # It's a function type sections = completion["typeInfo"]["paramSections"] f_sections = [formatted_param_section(ps) for ps in sections] return u"{}{}".format(f_result, "".join(f_sections))
[ "def", "formatted_completion_sig", "(", "completion", ")", ":", "f_result", "=", "completion", "[", "\"name\"", "]", "if", "is_basic_type", "(", "completion", ")", ":", "# It's a raw type", "return", "f_result", "elif", "len", "(", "completion", "[", "\"typeInfo\"", "]", "[", "\"paramSections\"", "]", ")", "==", "0", ":", "return", "f_result", "# It's a function type", "sections", "=", "completion", "[", "\"typeInfo\"", "]", "[", "\"paramSections\"", "]", "f_sections", "=", "[", "formatted_param_section", "(", "ps", ")", "for", "ps", "in", "sections", "]", "return", "u\"{}{}\"", ".", "format", "(", "f_result", ",", "\"\"", ".", "join", "(", "f_sections", ")", ")" ]
39.384615
0.001908
def R_isrk(self, k): """ Function returns the inverse square root of R matrix on step k. """ ind = int(self.index[self.R_time_var_index, k]) R = self.R[:, :, ind] if (R.shape[0] == 1): # 1-D case handle simplier. No storage # of the result, just compute it each time. inv_square_root = np.sqrt(1.0/R) else: if self.svd_each_time: (U, S, Vh) = sp.linalg.svd(R, full_matrices=False, compute_uv=True, overwrite_a=False, check_finite=True) inv_square_root = U * 1.0/np.sqrt(S) else: if ind in self.R_square_root: inv_square_root = self.R_square_root[ind] else: (U, S, Vh) = sp.linalg.svd(R, full_matrices=False, compute_uv=True, overwrite_a=False, check_finite=True) inv_square_root = U * 1.0/np.sqrt(S) self.R_square_root[ind] = inv_square_root return inv_square_root
[ "def", "R_isrk", "(", "self", ",", "k", ")", ":", "ind", "=", "int", "(", "self", ".", "index", "[", "self", ".", "R_time_var_index", ",", "k", "]", ")", "R", "=", "self", ".", "R", "[", ":", ",", ":", ",", "ind", "]", "if", "(", "R", ".", "shape", "[", "0", "]", "==", "1", ")", ":", "# 1-D case handle simplier. No storage", "# of the result, just compute it each time.", "inv_square_root", "=", "np", ".", "sqrt", "(", "1.0", "/", "R", ")", "else", ":", "if", "self", ".", "svd_each_time", ":", "(", "U", ",", "S", ",", "Vh", ")", "=", "sp", ".", "linalg", ".", "svd", "(", "R", ",", "full_matrices", "=", "False", ",", "compute_uv", "=", "True", ",", "overwrite_a", "=", "False", ",", "check_finite", "=", "True", ")", "inv_square_root", "=", "U", "*", "1.0", "/", "np", ".", "sqrt", "(", "S", ")", "else", ":", "if", "ind", "in", "self", ".", "R_square_root", ":", "inv_square_root", "=", "self", ".", "R_square_root", "[", "ind", "]", "else", ":", "(", "U", ",", "S", ",", "Vh", ")", "=", "sp", ".", "linalg", ".", "svd", "(", "R", ",", "full_matrices", "=", "False", ",", "compute_uv", "=", "True", ",", "overwrite_a", "=", "False", ",", "check_finite", "=", "True", ")", "inv_square_root", "=", "U", "*", "1.0", "/", "np", ".", "sqrt", "(", "S", ")", "self", ".", "R_square_root", "[", "ind", "]", "=", "inv_square_root", "return", "inv_square_root" ]
38.21875
0.001595
def last_seen_utc(self) -> Optional[datetime]: """Timestamp when the story has last been watched or None (UTC).""" if self._node['seen']: return datetime.utcfromtimestamp(self._node['seen'])
[ "def", "last_seen_utc", "(", "self", ")", "->", "Optional", "[", "datetime", "]", ":", "if", "self", ".", "_node", "[", "'seen'", "]", ":", "return", "datetime", ".", "utcfromtimestamp", "(", "self", ".", "_node", "[", "'seen'", "]", ")" ]
53.75
0.009174
def compile_format(self, log_format: str) -> Tuple[str, List[KeyMethod]]: """Translate log_format into form usable by modulo formatting All known atoms will be replaced with %s Also methods for formatting of those atoms will be added to _methods in appropriate order For example we have log_format = "%a %t" This format will be translated to "%s %s" Also contents of _methods will be [self._format_a, self._format_t] These method will be called and results will be passed to translated string format. Each _format_* method receive 'args' which is list of arguments given to self.log Exceptions are _format_e, _format_i and _format_o methods which also receive key name (by functools.partial) """ # list of (key, method) tuples, we don't use an OrderedDict as users # can repeat the same key more than once methods = list() for atom in self.FORMAT_RE.findall(log_format): if atom[1] == '': format_key1 = self.LOG_FORMAT_MAP[atom[0]] m = getattr(AccessLogger, '_format_%s' % atom[0]) key_method = KeyMethod(format_key1, m) else: format_key2 = (self.LOG_FORMAT_MAP[atom[2]], atom[1]) m = getattr(AccessLogger, '_format_%s' % atom[2]) key_method = KeyMethod(format_key2, functools.partial(m, atom[1])) methods.append(key_method) log_format = self.FORMAT_RE.sub(r'%s', log_format) log_format = self.CLEANUP_RE.sub(r'%\1', log_format) return log_format, methods
[ "def", "compile_format", "(", "self", ",", "log_format", ":", "str", ")", "->", "Tuple", "[", "str", ",", "List", "[", "KeyMethod", "]", "]", ":", "# list of (key, method) tuples, we don't use an OrderedDict as users", "# can repeat the same key more than once", "methods", "=", "list", "(", ")", "for", "atom", "in", "self", ".", "FORMAT_RE", ".", "findall", "(", "log_format", ")", ":", "if", "atom", "[", "1", "]", "==", "''", ":", "format_key1", "=", "self", ".", "LOG_FORMAT_MAP", "[", "atom", "[", "0", "]", "]", "m", "=", "getattr", "(", "AccessLogger", ",", "'_format_%s'", "%", "atom", "[", "0", "]", ")", "key_method", "=", "KeyMethod", "(", "format_key1", ",", "m", ")", "else", ":", "format_key2", "=", "(", "self", ".", "LOG_FORMAT_MAP", "[", "atom", "[", "2", "]", "]", ",", "atom", "[", "1", "]", ")", "m", "=", "getattr", "(", "AccessLogger", ",", "'_format_%s'", "%", "atom", "[", "2", "]", ")", "key_method", "=", "KeyMethod", "(", "format_key2", ",", "functools", ".", "partial", "(", "m", ",", "atom", "[", "1", "]", ")", ")", "methods", ".", "append", "(", "key_method", ")", "log_format", "=", "self", ".", "FORMAT_RE", ".", "sub", "(", "r'%s'", ",", "log_format", ")", "log_format", "=", "self", ".", "CLEANUP_RE", ".", "sub", "(", "r'%\\1'", ",", "log_format", ")", "return", "log_format", ",", "methods" ]
40.731707
0.00117
async def process_frame(self, frame): """Update nodes via frame, usually received by house monitor.""" if isinstance(frame, FrameNodeStatePositionChangedNotification): if frame.node_id not in self.pyvlx.nodes: return node = self.pyvlx.nodes[frame.node_id] if isinstance(node, OpeningDevice): node.position = Position(frame.current_position) await node.after_update() elif isinstance(frame, FrameGetAllNodesInformationNotification): if frame.node_id not in self.pyvlx.nodes: return node = self.pyvlx.nodes[frame.node_id] if isinstance(node, OpeningDevice): node.position = Position(frame.current_position) await node.after_update()
[ "async", "def", "process_frame", "(", "self", ",", "frame", ")", ":", "if", "isinstance", "(", "frame", ",", "FrameNodeStatePositionChangedNotification", ")", ":", "if", "frame", ".", "node_id", "not", "in", "self", ".", "pyvlx", ".", "nodes", ":", "return", "node", "=", "self", ".", "pyvlx", ".", "nodes", "[", "frame", ".", "node_id", "]", "if", "isinstance", "(", "node", ",", "OpeningDevice", ")", ":", "node", ".", "position", "=", "Position", "(", "frame", ".", "current_position", ")", "await", "node", ".", "after_update", "(", ")", "elif", "isinstance", "(", "frame", ",", "FrameGetAllNodesInformationNotification", ")", ":", "if", "frame", ".", "node_id", "not", "in", "self", ".", "pyvlx", ".", "nodes", ":", "return", "node", "=", "self", ".", "pyvlx", ".", "nodes", "[", "frame", ".", "node_id", "]", "if", "isinstance", "(", "node", ",", "OpeningDevice", ")", ":", "node", ".", "position", "=", "Position", "(", "frame", ".", "current_position", ")", "await", "node", ".", "after_update", "(", ")" ]
50.4375
0.002433
def _create_results_summary(self): """ Create the dataframe that displays the estimation results, and store it on the model instance. Returns ------- None. """ # Make sure we have all attributes needed to create the results summary needed_attributes = ["params", "standard_errors", "tvalues", "pvalues", "robust_std_errs", "robust_t_stats", "robust_p_vals"] try: assert all([hasattr(self, attr) for attr in needed_attributes]) assert all([isinstance(getattr(self, attr), pd.Series) for attr in needed_attributes]) except AssertionError: msg = "Call this function only after setting/calculating all other" msg_2 = " estimation results attributes" raise NotImplementedError(msg + msg_2) self.summary = pd.concat((self.params, self.standard_errors, self.tvalues, self.pvalues, self.robust_std_errs, self.robust_t_stats, self.robust_p_vals), axis=1) return None
[ "def", "_create_results_summary", "(", "self", ")", ":", "# Make sure we have all attributes needed to create the results summary", "needed_attributes", "=", "[", "\"params\"", ",", "\"standard_errors\"", ",", "\"tvalues\"", ",", "\"pvalues\"", ",", "\"robust_std_errs\"", ",", "\"robust_t_stats\"", ",", "\"robust_p_vals\"", "]", "try", ":", "assert", "all", "(", "[", "hasattr", "(", "self", ",", "attr", ")", "for", "attr", "in", "needed_attributes", "]", ")", "assert", "all", "(", "[", "isinstance", "(", "getattr", "(", "self", ",", "attr", ")", ",", "pd", ".", "Series", ")", "for", "attr", "in", "needed_attributes", "]", ")", "except", "AssertionError", ":", "msg", "=", "\"Call this function only after setting/calculating all other\"", "msg_2", "=", "\" estimation results attributes\"", "raise", "NotImplementedError", "(", "msg", "+", "msg_2", ")", "self", ".", "summary", "=", "pd", ".", "concat", "(", "(", "self", ".", "params", ",", "self", ".", "standard_errors", ",", "self", ".", "tvalues", ",", "self", ".", "pvalues", ",", "self", ".", "robust_std_errs", ",", "self", ".", "robust_t_stats", ",", "self", ".", "robust_p_vals", ")", ",", "axis", "=", "1", ")", "return", "None" ]
39.771429
0.001403
def add_element(self, location, element, delete_elem=False): """ Create an entry located at ``location``. Args: location: String or :class:`LocationDescriptor` to describe a "separator location" (i.e. dir1/dir2/dir3 for instance). element: Element to store. delete_elem: Delete old element or not if it exist? Returns: The created node with the element. Notes: The different sub locations entries **must** exist and the last may or may not already exist. Use the more strict :meth:`add_unique_element` method if needed. You don't need to have a common root node. We internally use a dummy root node. """ return self._create_entry(location, element, unique=False, delete_element=delete_elem)
[ "def", "add_element", "(", "self", ",", "location", ",", "element", ",", "delete_elem", "=", "False", ")", ":", "return", "self", ".", "_create_entry", "(", "location", ",", "element", ",", "unique", "=", "False", ",", "delete_element", "=", "delete_elem", ")" ]
43.55
0.011236
def triangle_normal(a,b,c): ''' triangle_normal(a, b, c) yields the normal vector of the triangle whose vertices are given by the points a, b, and c. If the points are 2D points, then 3D normal vectors are still yielded, that are always (0,0,1) or (0,0,-1). This function auto-threads over matrices, in which case they must be in equivalent orientations, and the result is returned in whatever orientation they are given in. In some cases, the intended orientation of the matrices is ambiguous (e.g., if a, b, and c are 2 x 3 matrices), in which case the matrix is always assumed to be given in (dims x vertices) orientation. ''' (a,b,c) = [np.asarray(x) for x in (a,b,c)] if len(a.shape) == 1 and len(b.shape) == 1 and len(c.shape) == 1: return triangle_normal(*[np.transpose([x]) for x in (a,b,c)])[:,0] (a,b,c) = [np.transpose([x]) if len(x.shape) == 1 else x for x in (a,b,c)] # find a required number of dimensions, if possible if a.shape[0] in (2,3): dims = a.shape[0] tx = True else: dims = a.shape[1] (a,b,c) = [x.T for x in (a,b,c)] tx = False n = (a.shape[1] if a.shape[1] != 1 else b.shape[1] if b.shape[1] != 1 else c.shape[1] if c.shape[1] != 1 else 1) if dims == 2: (a,b,c) = [np.vstack((x, np.zeros((1,n)))) for x in (a,b,c)] ab = normalize(b - a) ac = normalize(c - a) res = np.cross(ab, ac, axisa=0, axisb=0) return res.T if tx else res
[ "def", "triangle_normal", "(", "a", ",", "b", ",", "c", ")", ":", "(", "a", ",", "b", ",", "c", ")", "=", "[", "np", ".", "asarray", "(", "x", ")", "for", "x", "in", "(", "a", ",", "b", ",", "c", ")", "]", "if", "len", "(", "a", ".", "shape", ")", "==", "1", "and", "len", "(", "b", ".", "shape", ")", "==", "1", "and", "len", "(", "c", ".", "shape", ")", "==", "1", ":", "return", "triangle_normal", "(", "*", "[", "np", ".", "transpose", "(", "[", "x", "]", ")", "for", "x", "in", "(", "a", ",", "b", ",", "c", ")", "]", ")", "[", ":", ",", "0", "]", "(", "a", ",", "b", ",", "c", ")", "=", "[", "np", ".", "transpose", "(", "[", "x", "]", ")", "if", "len", "(", "x", ".", "shape", ")", "==", "1", "else", "x", "for", "x", "in", "(", "a", ",", "b", ",", "c", ")", "]", "# find a required number of dimensions, if possible", "if", "a", ".", "shape", "[", "0", "]", "in", "(", "2", ",", "3", ")", ":", "dims", "=", "a", ".", "shape", "[", "0", "]", "tx", "=", "True", "else", ":", "dims", "=", "a", ".", "shape", "[", "1", "]", "(", "a", ",", "b", ",", "c", ")", "=", "[", "x", ".", "T", "for", "x", "in", "(", "a", ",", "b", ",", "c", ")", "]", "tx", "=", "False", "n", "=", "(", "a", ".", "shape", "[", "1", "]", "if", "a", ".", "shape", "[", "1", "]", "!=", "1", "else", "b", ".", "shape", "[", "1", "]", "if", "b", ".", "shape", "[", "1", "]", "!=", "1", "else", "c", ".", "shape", "[", "1", "]", "if", "c", ".", "shape", "[", "1", "]", "!=", "1", "else", "1", ")", "if", "dims", "==", "2", ":", "(", "a", ",", "b", ",", "c", ")", "=", "[", "np", ".", "vstack", "(", "(", "x", ",", "np", ".", "zeros", "(", "(", "1", ",", "n", ")", ")", ")", ")", "for", "x", "in", "(", "a", ",", "b", ",", "c", ")", "]", "ab", "=", "normalize", "(", "b", "-", "a", ")", "ac", "=", "normalize", "(", "c", "-", "a", ")", "res", "=", "np", ".", "cross", "(", "ab", ",", "ac", ",", "axisa", "=", "0", ",", "axisb", "=", "0", ")", "return", "res", ".", "T", "if", "tx", "else", "res" ]
49.5
0.019815
def setOptions( self, options ): """ Sets the tag option list for this widget. If used, tags need to be found within the list of options when added. :param options | [<str>, ..] """ self._options = map(str, options) if ( options ): completer = QCompleter(options, self) completer.setCompletionMode(QCompleter.InlineCompletion) self.setCompleter(completer) else: self.setCompleter(None)
[ "def", "setOptions", "(", "self", ",", "options", ")", ":", "self", ".", "_options", "=", "map", "(", "str", ",", "options", ")", "if", "(", "options", ")", ":", "completer", "=", "QCompleter", "(", "options", ",", "self", ")", "completer", ".", "setCompletionMode", "(", "QCompleter", ".", "InlineCompletion", ")", "self", ".", "setCompleter", "(", "completer", ")", "else", ":", "self", ".", "setCompleter", "(", "None", ")" ]
34.6
0.015009
def flatten(nested_iterable): """ Flattens arbitrarily nested lists/tuples. Code partially taken from https://stackoverflow.com/a/10824420. Parameters ---------- nested_iterable A list or tuple of arbitrarily nested values. Yields ------ any Non-list and non-tuple values in `nested_iterable`. """ # don't just check if something is iterable here, because then strings # and arrays will be split into their characters and components if not isinstance(nested_iterable, (list, tuple)): yield nested_iterable else: for i in nested_iterable: if isinstance(i, (list, tuple)): for j in flatten(i): yield j else: yield i
[ "def", "flatten", "(", "nested_iterable", ")", ":", "# don't just check if something is iterable here, because then strings", "# and arrays will be split into their characters and components", "if", "not", "isinstance", "(", "nested_iterable", ",", "(", "list", ",", "tuple", ")", ")", ":", "yield", "nested_iterable", "else", ":", "for", "i", "in", "nested_iterable", ":", "if", "isinstance", "(", "i", ",", "(", "list", ",", "tuple", ")", ")", ":", "for", "j", "in", "flatten", "(", "i", ")", ":", "yield", "j", "else", ":", "yield", "i" ]
26.928571
0.00128
def _section_execution_order(self, section, iterargs , reverse=False , custom_order=None , explicit_checks: Iterable = None , exclude_checks: Iterable = None): """ order must: a) contain all variable args (we're appending missing ones) b) not contian duplictates (we're removing repeated items) order may contain *iterargs otherwise it is appended to the end order may contain "*check" otherwise, it is like *check is appended to the end (Not done explicitly though). """ stack = list(custom_order) if custom_order is not None else list(section.order) if '*iterargs' not in stack: stack.append('*iterargs') stack.reverse() full_order = [] seen = set() while len(stack): item = stack.pop() if item in seen: continue seen.add(item) if item == '*iterargs': all_iterargs = list(iterargs.keys()) # assuming there is a meaningful order all_iterargs.reverse() stack += all_iterargs continue full_order.append(item) # Filter down checks. Checks to exclude are filtered for last as the user # might e.g. want to include all tests with "kerning" in the ID, except for # "kerning_something". explicit_checks could then be ["kerning"] and # exclude_checks ["something"]. checks = section.checks if explicit_checks: checks = [ check for check in checks if any(include_string in check.id for include_string in explicit_checks) ] if exclude_checks: checks = [ check for check in checks if not any(exclude_string in check.id for exclude_string in exclude_checks) ] scopes = self._analyze_checks(full_order, checks) key = lambda item: item[1] # check, signature, scope = item scopes.sort(key=key, reverse=reverse) for check, args in self._execute_scopes(iterargs, scopes): # this is the iterargs tuple that will be used as a key for caching # and so on. we could sort it, to ensure it yields in the same # cache locations always, but then again, it is already in a well # defined order, by clustering. yield check, tuple(args)
[ "def", "_section_execution_order", "(", "self", ",", "section", ",", "iterargs", ",", "reverse", "=", "False", ",", "custom_order", "=", "None", ",", "explicit_checks", ":", "Iterable", "=", "None", ",", "exclude_checks", ":", "Iterable", "=", "None", ")", ":", "stack", "=", "list", "(", "custom_order", ")", "if", "custom_order", "is", "not", "None", "else", "list", "(", "section", ".", "order", ")", "if", "'*iterargs'", "not", "in", "stack", ":", "stack", ".", "append", "(", "'*iterargs'", ")", "stack", ".", "reverse", "(", ")", "full_order", "=", "[", "]", "seen", "=", "set", "(", ")", "while", "len", "(", "stack", ")", ":", "item", "=", "stack", ".", "pop", "(", ")", "if", "item", "in", "seen", ":", "continue", "seen", ".", "add", "(", "item", ")", "if", "item", "==", "'*iterargs'", ":", "all_iterargs", "=", "list", "(", "iterargs", ".", "keys", "(", ")", ")", "# assuming there is a meaningful order", "all_iterargs", ".", "reverse", "(", ")", "stack", "+=", "all_iterargs", "continue", "full_order", ".", "append", "(", "item", ")", "# Filter down checks. Checks to exclude are filtered for last as the user", "# might e.g. want to include all tests with \"kerning\" in the ID, except for", "# \"kerning_something\". explicit_checks could then be [\"kerning\"] and", "# exclude_checks [\"something\"].", "checks", "=", "section", ".", "checks", "if", "explicit_checks", ":", "checks", "=", "[", "check", "for", "check", "in", "checks", "if", "any", "(", "include_string", "in", "check", ".", "id", "for", "include_string", "in", "explicit_checks", ")", "]", "if", "exclude_checks", ":", "checks", "=", "[", "check", "for", "check", "in", "checks", "if", "not", "any", "(", "exclude_string", "in", "check", ".", "id", "for", "exclude_string", "in", "exclude_checks", ")", "]", "scopes", "=", "self", ".", "_analyze_checks", "(", "full_order", ",", "checks", ")", "key", "=", "lambda", "item", ":", "item", "[", "1", "]", "# check, signature, scope = item", "scopes", ".", "sort", "(", "key", "=", "key", ",", "reverse", "=", "reverse", ")", "for", "check", ",", "args", "in", "self", ".", "_execute_scopes", "(", "iterargs", ",", "scopes", ")", ":", "# this is the iterargs tuple that will be used as a key for caching", "# and so on. we could sort it, to ensure it yields in the same", "# cache locations always, but then again, it is already in a well", "# defined order, by clustering.", "yield", "check", ",", "tuple", "(", "args", ")" ]
36.612903
0.009867
def map(self): """Perform a function on every item in an iterable.""" with Pool(self.cpu_count) as pool: pool.map(self._func, self._iterable) pool.close() return True
[ "def", "map", "(", "self", ")", ":", "with", "Pool", "(", "self", ".", "cpu_count", ")", "as", "pool", ":", "pool", ".", "map", "(", "self", ".", "_func", ",", "self", ".", "_iterable", ")", "pool", ".", "close", "(", ")", "return", "True" ]
34.833333
0.009346
def write_Track(file, track, bpm=120, repeat=0, verbose=False): """Write a mingus.Track to a MIDI file. Write the name to the file and set the instrument if the instrument has the attribute instrument_nr, which represents the MIDI instrument number. The class MidiInstrument in mingus.containers.Instrument has this attribute by default. """ m = MidiFile() t = MidiTrack(bpm) m.tracks = [t] while repeat >= 0: t.play_Track(track) repeat -= 1 return m.write_file(file, verbose)
[ "def", "write_Track", "(", "file", ",", "track", ",", "bpm", "=", "120", ",", "repeat", "=", "0", ",", "verbose", "=", "False", ")", ":", "m", "=", "MidiFile", "(", ")", "t", "=", "MidiTrack", "(", "bpm", ")", "m", ".", "tracks", "=", "[", "t", "]", "while", "repeat", ">=", "0", ":", "t", ".", "play_Track", "(", "track", ")", "repeat", "-=", "1", "return", "m", ".", "write_file", "(", "file", ",", "verbose", ")" ]
34.866667
0.001862
def recursive_model_update(model, props): """ Recursively updates attributes on a model including other models. If the type of the new model matches the old model properties are simply updated, otherwise the model is replaced. """ updates = {} valid_properties = model.properties_with_values() for k, v in props.items(): if isinstance(v, Model): nested_model = getattr(model, k) if type(v) is type(nested_model): nested_props = v.properties_with_values(include_defaults=False) recursive_model_update(nested_model, nested_props) else: setattr(model, k, v) elif k in valid_properties and v != valid_properties[k]: updates[k] = v model.update(**updates)
[ "def", "recursive_model_update", "(", "model", ",", "props", ")", ":", "updates", "=", "{", "}", "valid_properties", "=", "model", ".", "properties_with_values", "(", ")", "for", "k", ",", "v", "in", "props", ".", "items", "(", ")", ":", "if", "isinstance", "(", "v", ",", "Model", ")", ":", "nested_model", "=", "getattr", "(", "model", ",", "k", ")", "if", "type", "(", "v", ")", "is", "type", "(", "nested_model", ")", ":", "nested_props", "=", "v", ".", "properties_with_values", "(", "include_defaults", "=", "False", ")", "recursive_model_update", "(", "nested_model", ",", "nested_props", ")", "else", ":", "setattr", "(", "model", ",", "k", ",", "v", ")", "elif", "k", "in", "valid_properties", "and", "v", "!=", "valid_properties", "[", "k", "]", ":", "updates", "[", "k", "]", "=", "v", "model", ".", "update", "(", "*", "*", "updates", ")" ]
41.052632
0.001253
def move_identity(db, from_id, to_uuid): """Move an identity to a unique identity. This function shifts the identity identified by 'from_id' to the unique identity 'to_uuid'. When 'to_uuid' is the unique identity that is currently related to 'from_id', the action does not have any effect. In the case of 'from_id' and 'to_uuid' have equal values and the unique identity does not exist, a new unique identity will be created and the identity will be moved to it. The function raises a 'NotFoundError exception when either 'from_id' or 'to_uuid' do not exist in the registry. :param from_id: identifier of the identity set to be moved :param to_uuid: identifier of the unique identity where 'from_id' will be moved :raises NotFoundError: raised when either 'from_uuid' or 'to_uuid' do not exist in the registry """ with db.connect() as session: fid = find_identity(session, from_id) tuid = find_unique_identity(session, to_uuid) if not fid: raise NotFoundError(entity=from_id) if not tuid: # Move identity to a new one if from_id == to_uuid: tuid = add_unique_identity_db(session, to_uuid) else: raise NotFoundError(entity=to_uuid) move_identity_db(session, fid, tuid)
[ "def", "move_identity", "(", "db", ",", "from_id", ",", "to_uuid", ")", ":", "with", "db", ".", "connect", "(", ")", "as", "session", ":", "fid", "=", "find_identity", "(", "session", ",", "from_id", ")", "tuid", "=", "find_unique_identity", "(", "session", ",", "to_uuid", ")", "if", "not", "fid", ":", "raise", "NotFoundError", "(", "entity", "=", "from_id", ")", "if", "not", "tuid", ":", "# Move identity to a new one", "if", "from_id", "==", "to_uuid", ":", "tuid", "=", "add_unique_identity_db", "(", "session", ",", "to_uuid", ")", "else", ":", "raise", "NotFoundError", "(", "entity", "=", "to_uuid", ")", "move_identity_db", "(", "session", ",", "fid", ",", "tuid", ")" ]
36.081081
0.000729
def angle_subtended(ell, **kwargs): """ Compute the half angle subtended (or min and max angles) for an offset elliptical conic from the origin or an arbitrary viewpoint. kwargs: tangent Return tangent instead of angle (default false) viewpoint Defaults to origin """ return_tangent = kwargs.pop('tangent',False) con, transform, offset = ell.projection(**kwargs) v = N.linalg.norm(N.array(con.major_axes()),axis=1) A = N.sort(v)[::-1] # Sort highest values first A = N.squeeze(A) B = N.linalg.norm(offset) if return_tangent: return A/B return N.arctan2(A,B)
[ "def", "angle_subtended", "(", "ell", ",", "*", "*", "kwargs", ")", ":", "return_tangent", "=", "kwargs", ".", "pop", "(", "'tangent'", ",", "False", ")", "con", ",", "transform", ",", "offset", "=", "ell", ".", "projection", "(", "*", "*", "kwargs", ")", "v", "=", "N", ".", "linalg", ".", "norm", "(", "N", ".", "array", "(", "con", ".", "major_axes", "(", ")", ")", ",", "axis", "=", "1", ")", "A", "=", "N", ".", "sort", "(", "v", ")", "[", ":", ":", "-", "1", "]", "# Sort highest values first", "A", "=", "N", ".", "squeeze", "(", "A", ")", "B", "=", "N", ".", "linalg", ".", "norm", "(", "offset", ")", "if", "return_tangent", ":", "return", "A", "/", "B", "return", "N", ".", "arctan2", "(", "A", ",", "B", ")" ]
32.421053
0.009464
def make_directory(path): """ Make a directory and any intermediate directories that don't already exist. This function handles the case where two threads try to create a directory at once. """ if not os.path.exists(path): # concurrent writes that try to create the same dir can fail try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST: pass else: raise e
[ "def", "make_directory", "(", "path", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "# concurrent writes that try to create the same dir can fail", "try", ":", "os", ".", "makedirs", "(", "path", ")", "except", "OSError", "as", "e", ":", "if", "e", ".", "errno", "==", "errno", ".", "EEXIST", ":", "pass", "else", ":", "raise", "e" ]
29.75
0.002037
def authorize(self): """ Use the magic of a unicorn and summon the set-top box to listen to us. / ,.. / ,' '; ,,.__ _,' /'; . :',' ~~~~ '. '~ :' ( ) )::, '. '. .=----=..-~ .;' ' ;' :: ':. '" (: ': ;) \\ '" ./ '" '" Seriously, I've no idea what I'm doing here. """ # Read the version of the set-top box and write it back. Why? I've no # idea. version = self.con.makefile().readline() self.con.send(version.encode()) # The set-top box returns with 2 bytes. I've no idea what they mean. self.con.recv(2) # The following reads and writes are used to authenticate. But I don't # fully understand what is going on. self.con.send(struct.pack('>B', 1)) msg = self.con.recv(4) response = struct.unpack(">I", msg) if response[0] != 0: log.debug("Failed to authorize with set-top at %s:%s.", self.ip, self.port) raise AuthenticationError() # Dunno where this is good for. But otherwise the client doesn't work. self.con.send(b'0') log.debug('Authorized succesfully with set-top box at %s:%s.', self.ip, self.port)
[ "def", "authorize", "(", "self", ")", ":", "# Read the version of the set-top box and write it back. Why? I've no", "# idea.", "version", "=", "self", ".", "con", ".", "makefile", "(", ")", ".", "readline", "(", ")", "self", ".", "con", ".", "send", "(", "version", ".", "encode", "(", ")", ")", "# The set-top box returns with 2 bytes. I've no idea what they mean.", "self", ".", "con", ".", "recv", "(", "2", ")", "# The following reads and writes are used to authenticate. But I don't", "# fully understand what is going on.", "self", ".", "con", ".", "send", "(", "struct", ".", "pack", "(", "'>B'", ",", "1", ")", ")", "msg", "=", "self", ".", "con", ".", "recv", "(", "4", ")", "response", "=", "struct", ".", "unpack", "(", "\">I\"", ",", "msg", ")", "if", "response", "[", "0", "]", "!=", "0", ":", "log", ".", "debug", "(", "\"Failed to authorize with set-top at %s:%s.\"", ",", "self", ".", "ip", ",", "self", ".", "port", ")", "raise", "AuthenticationError", "(", ")", "# Dunno where this is good for. But otherwise the client doesn't work.", "self", ".", "con", ".", "send", "(", "b'0'", ")", "log", ".", "debug", "(", "'Authorized succesfully with set-top box at %s:%s.'", ",", "self", ".", "ip", ",", "self", ".", "port", ")" ]
33.536585
0.001413
def get(self, key, value=None): "x.get(k[,d]) -> x[k] if k in x, else d. d defaults to None." _key = self._prepare_key(key) prefix, node = self._get_node_by_key(_key) if prefix==_key and node.value is not None: return self._unpickle_value(node.value) else: return value
[ "def", "get", "(", "self", ",", "key", ",", "value", "=", "None", ")", ":", "_key", "=", "self", ".", "_prepare_key", "(", "key", ")", "prefix", ",", "node", "=", "self", ".", "_get_node_by_key", "(", "_key", ")", "if", "prefix", "==", "_key", "and", "node", ".", "value", "is", "not", "None", ":", "return", "self", ".", "_unpickle_value", "(", "node", ".", "value", ")", "else", ":", "return", "value" ]
40.75
0.009009
def set_bytes_at_offset(self, offset, data): """Overwrite the bytes at the given file offset with the given string. Return True if successful, False otherwise. It can fail if the offset is outside the file's boundaries. """ if not isinstance(data, bytes): raise TypeError('data should be of type: bytes') if 0 <= offset < len(self.__data__): self.__data__ = ( self.__data__[:offset] + data + self.__data__[offset+len(data):] ) else: return False return True
[ "def", "set_bytes_at_offset", "(", "self", ",", "offset", ",", "data", ")", ":", "if", "not", "isinstance", "(", "data", ",", "bytes", ")", ":", "raise", "TypeError", "(", "'data should be of type: bytes'", ")", "if", "0", "<=", "offset", "<", "len", "(", "self", ".", "__data__", ")", ":", "self", ".", "__data__", "=", "(", "self", ".", "__data__", "[", ":", "offset", "]", "+", "data", "+", "self", ".", "__data__", "[", "offset", "+", "len", "(", "data", ")", ":", "]", ")", "else", ":", "return", "False", "return", "True" ]
34.125
0.008913
def histogram(self, stat, value, tags=None): """Report a histogram.""" self._log('histogram', stat, value, tags)
[ "def", "histogram", "(", "self", ",", "stat", ",", "value", ",", "tags", "=", "None", ")", ":", "self", ".", "_log", "(", "'histogram'", ",", "stat", ",", "value", ",", "tags", ")" ]
42
0.015625
def bin2hexline(data, add_addr=True, width=16): """ Format binary data to a Hex-Editor like format... >>> data = bytearray([i for i in range(256)]) >>> print('\\n'.join(bin2hexline(data, width=16))) 0000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f ................ 0016 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f ................ 0032 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&'()*+,-./ 0048 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 0123456789:;<=>? 0064 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO 0080 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f PQRSTUVWXYZ[\]^_ 0096 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f `abcdefghijklmno 0112 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f pqrstuvwxyz{|}~. 0128 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f ................ 0144 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f ................ 0160 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af ................ 0176 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf ................ 0192 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf ................ 0208 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 da db dc dd de df ................ 0224 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 ea eb ec ed ee ef ................ 0240 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff ................ with open("C:\Python27\python.exe", "rb") as f: data = f.read(150) print("\n".join(bin2hexline(data, width=16))) 0000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ.............. 0016 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ........@....... 0032 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 0048 00 00 00 00 00 00 00 00 00 00 00 00 e8 00 00 00 ................ 0064 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 ........!..L.!Th 0080 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f is.program.canno 0096 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 t.be.run.in.DOS. 0112 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 mode....$....... 0128 9d 68 ba 89 d9 09 d4 da d9 09 d4 da d9 09 d4 da .h.............. 0144 d0 71 41 da d8 09 .qA... """ data = bytearray(data) # same as string.printable but without \t\n\r\v\f ;) printable = string.digits + string.ascii_letters + string.punctuation + " " addr = 0 lines = [] run = True line_width = 4 + (width * 3) + 1 while run: if add_addr: line = ["%04i" % addr] else: line = [] ascii_block = "" for i in range(width): b = data[addr] if chr(b) in printable: ascii_block += chr(b) else: ascii_block += "." line.append("%02x" % b) addr += 1 if addr >= len(data): run = False break line = " ".join(line) line = line.ljust(line_width) line += ascii_block lines.append(line) return lines
[ "def", "bin2hexline", "(", "data", ",", "add_addr", "=", "True", ",", "width", "=", "16", ")", ":", "data", "=", "bytearray", "(", "data", ")", "# same as string.printable but without \\t\\n\\r\\v\\f ;)", "printable", "=", "string", ".", "digits", "+", "string", ".", "ascii_letters", "+", "string", ".", "punctuation", "+", "\" \"", "addr", "=", "0", "lines", "=", "[", "]", "run", "=", "True", "line_width", "=", "4", "+", "(", "width", "*", "3", ")", "+", "1", "while", "run", ":", "if", "add_addr", ":", "line", "=", "[", "\"%04i\"", "%", "addr", "]", "else", ":", "line", "=", "[", "]", "ascii_block", "=", "\"\"", "for", "i", "in", "range", "(", "width", ")", ":", "b", "=", "data", "[", "addr", "]", "if", "chr", "(", "b", ")", "in", "printable", ":", "ascii_block", "+=", "chr", "(", "b", ")", "else", ":", "ascii_block", "+=", "\".\"", "line", ".", "append", "(", "\"%02x\"", "%", "b", ")", "addr", "+=", "1", "if", "addr", ">=", "len", "(", "data", ")", ":", "run", "=", "False", "break", "line", "=", "\" \"", ".", "join", "(", "line", ")", "line", "=", "line", ".", "ljust", "(", "line_width", ")", "line", "+=", "ascii_block", "lines", ".", "append", "(", "line", ")", "return", "lines" ]
40.065789
0.001282
def diff_sizes(a, b, progressbar=None): """Return list of tuples where sizes differ. Tuple structure: (identifier, size in a, size in b) Assumes list of identifiers in a and b are identical. :param a: first :class:`dtoolcore.DataSet` :param b: second :class:`dtoolcore.DataSet` :returns: list of tuples for all items with different sizes """ difference = [] for i in a.identifiers: a_size = a.item_properties(i)["size_in_bytes"] b_size = b.item_properties(i)["size_in_bytes"] if a_size != b_size: difference.append((i, a_size, b_size)) if progressbar: progressbar.update(1) return difference
[ "def", "diff_sizes", "(", "a", ",", "b", ",", "progressbar", "=", "None", ")", ":", "difference", "=", "[", "]", "for", "i", "in", "a", ".", "identifiers", ":", "a_size", "=", "a", ".", "item_properties", "(", "i", ")", "[", "\"size_in_bytes\"", "]", "b_size", "=", "b", ".", "item_properties", "(", "i", ")", "[", "\"size_in_bytes\"", "]", "if", "a_size", "!=", "b_size", ":", "difference", ".", "append", "(", "(", "i", ",", "a_size", ",", "b_size", ")", ")", "if", "progressbar", ":", "progressbar", ".", "update", "(", "1", ")", "return", "difference" ]
29.304348
0.001437
def check_data_port_connection(self, check_data_port): """Checks the connection validity of a data port The method is called by a child state to check the validity of a data port in case it is connected with data flows. The data port does not belong to 'self', but to one of self.states. If the data port is connected to a data flow, the method checks, whether these connect consistent data types of ports. :param rafcon.core.data_port.DataPort check_data_port: The port to check :return: valid, message """ for data_flow in self.data_flows.values(): # Check whether the data flow connects the given port from_port = self.get_data_port(data_flow.from_state, data_flow.from_key) to_port = self.get_data_port(data_flow.to_state, data_flow.to_key) if check_data_port is from_port or check_data_port is to_port: # check if one of the data_types if type 'object'; in this case the data flow is always valid if not (from_port.data_type is object or to_port.data_type is object): if not type_inherits_of_type(from_port.data_type, to_port.data_type): return False, "Connection of two non-compatible data types" return True, "valid"
[ "def", "check_data_port_connection", "(", "self", ",", "check_data_port", ")", ":", "for", "data_flow", "in", "self", ".", "data_flows", ".", "values", "(", ")", ":", "# Check whether the data flow connects the given port", "from_port", "=", "self", ".", "get_data_port", "(", "data_flow", ".", "from_state", ",", "data_flow", ".", "from_key", ")", "to_port", "=", "self", ".", "get_data_port", "(", "data_flow", ".", "to_state", ",", "data_flow", ".", "to_key", ")", "if", "check_data_port", "is", "from_port", "or", "check_data_port", "is", "to_port", ":", "# check if one of the data_types if type 'object'; in this case the data flow is always valid", "if", "not", "(", "from_port", ".", "data_type", "is", "object", "or", "to_port", ".", "data_type", "is", "object", ")", ":", "if", "not", "type_inherits_of_type", "(", "from_port", ".", "data_type", ",", "to_port", ".", "data_type", ")", ":", "return", "False", ",", "\"Connection of two non-compatible data types\"", "return", "True", ",", "\"valid\"" ]
62.333333
0.008277
def on_value_change(self, picker, old, new): """ Set the checked property based on the checked state of all the children """ d = self.declaration with self.widget.setValue.suppressed(): d.value = new
[ "def", "on_value_change", "(", "self", ",", "picker", ",", "old", ",", "new", ")", ":", "d", "=", "self", ".", "declaration", "with", "self", ".", "widget", ".", "setValue", ".", "suppressed", "(", ")", ":", "d", ".", "value", "=", "new" ]
32.125
0.011364
def expect(self, pattern, timeout=-1): """Waits on the given pattern to appear in std_out""" if self.blocking: raise RuntimeError("expect can only be used on non-blocking commands.") try: self.subprocess.expect(pattern=pattern, timeout=timeout) except pexpect.EOF: pass
[ "def", "expect", "(", "self", ",", "pattern", ",", "timeout", "=", "-", "1", ")", ":", "if", "self", ".", "blocking", ":", "raise", "RuntimeError", "(", "\"expect can only be used on non-blocking commands.\"", ")", "try", ":", "self", ".", "subprocess", ".", "expect", "(", "pattern", "=", "pattern", ",", "timeout", "=", "timeout", ")", "except", "pexpect", ".", "EOF", ":", "pass" ]
33
0.00885
def _constraint_lb_and_ub_to_gurobi_sense_rhs_and_range_value(lb, ub): """Helper function used by Constraint and Model""" if lb is None and ub is None: raise Exception("Free constraint ...") elif lb is None: sense = '<' rhs = float(ub) range_value = 0. elif ub is None: sense = '>' rhs = float(lb) range_value = 0. elif lb == ub: sense = '=' rhs = float(lb) range_value = 0. elif lb > ub: raise ValueError("Lower bound is larger than upper bound.") else: sense = '=' rhs = float(lb) range_value = float(ub - lb) return sense, rhs, range_value
[ "def", "_constraint_lb_and_ub_to_gurobi_sense_rhs_and_range_value", "(", "lb", ",", "ub", ")", ":", "if", "lb", "is", "None", "and", "ub", "is", "None", ":", "raise", "Exception", "(", "\"Free constraint ...\"", ")", "elif", "lb", "is", "None", ":", "sense", "=", "'<'", "rhs", "=", "float", "(", "ub", ")", "range_value", "=", "0.", "elif", "ub", "is", "None", ":", "sense", "=", "'>'", "rhs", "=", "float", "(", "lb", ")", "range_value", "=", "0.", "elif", "lb", "==", "ub", ":", "sense", "=", "'='", "rhs", "=", "float", "(", "lb", ")", "range_value", "=", "0.", "elif", "lb", ">", "ub", ":", "raise", "ValueError", "(", "\"Lower bound is larger than upper bound.\"", ")", "else", ":", "sense", "=", "'='", "rhs", "=", "float", "(", "lb", ")", "range_value", "=", "float", "(", "ub", "-", "lb", ")", "return", "sense", ",", "rhs", ",", "range_value" ]
28.869565
0.001458
def put(self, item): """Adds the passed in item object to the queue and calls :func:`flush` if the size of the queue is larger than :func:`max_queue_length`. This method does nothing if the passed in item is None. Args: item (:class:`contracts.Envelope`) item the telemetry envelope object to send to the service. """ if not item: return self._queue.put(item) if self._queue.qsize() >= self._max_queue_length: self.flush()
[ "def", "put", "(", "self", ",", "item", ")", ":", "if", "not", "item", ":", "return", "self", ".", "_queue", ".", "put", "(", "item", ")", "if", "self", ".", "_queue", ".", "qsize", "(", ")", ">=", "self", ".", "_max_queue_length", ":", "self", ".", "flush", "(", ")" ]
42
0.009709
def merge_dict_of_lists(adict, indices, pop_later=True, copy=True): """Extend the within a dict of lists. The indices will indicate which list have to be extended by which other list. Parameters ---------- adict: OrderedDict An ordered dictionary of lists indices: list or tuple of 2 iterables of int, bot having the same length The indices of the lists that have to be merged, both iterables items will be read pair by pair, the first is the index to the list that will be extended with the list of the second index. The indices can be constructed with Numpy e.g., indices = np.where(square_matrix) pop_later: bool If True will oop out the lists that are indicated in the second list of indices. copy: bool If True will perform a deep copy of the input adict before modifying it, hence not changing the original input. Returns ------- Dictionary of lists Raises ------ IndexError If the indices are out of range """ def check_indices(idxs, x): for i in chain(*idxs): if i < 0 or i >= x: raise IndexError("Given indices are out of dict range.") check_indices(indices, len(adict)) rdict = adict.copy() if copy else adict dict_keys = list(rdict.keys()) for i, j in zip(*indices): rdict[dict_keys[i]].extend(rdict[dict_keys[j]]) if pop_later: for i, j in zip(*indices): rdict.pop(dict_keys[j], '') return rdict
[ "def", "merge_dict_of_lists", "(", "adict", ",", "indices", ",", "pop_later", "=", "True", ",", "copy", "=", "True", ")", ":", "def", "check_indices", "(", "idxs", ",", "x", ")", ":", "for", "i", "in", "chain", "(", "*", "idxs", ")", ":", "if", "i", "<", "0", "or", "i", ">=", "x", ":", "raise", "IndexError", "(", "\"Given indices are out of dict range.\"", ")", "check_indices", "(", "indices", ",", "len", "(", "adict", ")", ")", "rdict", "=", "adict", ".", "copy", "(", ")", "if", "copy", "else", "adict", "dict_keys", "=", "list", "(", "rdict", ".", "keys", "(", ")", ")", "for", "i", ",", "j", "in", "zip", "(", "*", "indices", ")", ":", "rdict", "[", "dict_keys", "[", "i", "]", "]", ".", "extend", "(", "rdict", "[", "dict_keys", "[", "j", "]", "]", ")", "if", "pop_later", ":", "for", "i", ",", "j", "in", "zip", "(", "*", "indices", ")", ":", "rdict", ".", "pop", "(", "dict_keys", "[", "j", "]", ",", "''", ")", "return", "rdict" ]
29.686275
0.000639
def long_poll_notifications(self, **kwargs): # noqa: E501 """Get notifications using Long Poll # noqa: E501 In this case, notifications are delivered through HTTP long poll requests. The HTTP request is kept open until an event notification or a batch of event notifications are delivered to the client or the request times out (response code 204). In both cases, the client should open a new polling connection after the previous one closes. Only a single long polling connection per API key can be ongoing at any given time. You must have a persistent connection (Connection keep-alive header in the request) to avoid excess TLS handshakes. The pull channel is implicitly created by the first GET call to `/v2/notification/pull`. It is refreshed on each GET call. If the channel is not polled for a long time (10 minutes) - it expires and will be deleted. This means that no notifications will stay in the queue between polls. A channel can be also deleted explicitly by a DELETE call. **Note:** If you cannot have a public facing callback URL, for example when developing on your local machine, you can use long polling to check for new messages. However, **long polling is deprecated** and will likely be replaced in future. It is meant only for experimentation and not for commercial usage. The proper method to receive notifications is a **notification callback**. There can only be one notification channel per API key at a time in Device Management Connect. If a callback notification channel already exists, you need to delete it before creating a long poll notification channel, and vice-versa. **Example usage:** curl -X GET https://api.us-east-1.mbedcloud.com/v2/notification/pull -H 'authorization: Bearer {api-key}' # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.long_poll_notifications(asynchronous=True) >>> result = thread.get() :param asynchronous bool :return: NotificationMessage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('asynchronous'): return self.long_poll_notifications_with_http_info(**kwargs) # noqa: E501 else: (data) = self.long_poll_notifications_with_http_info(**kwargs) # noqa: E501 return data
[ "def", "long_poll_notifications", "(", "self", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'asynchronous'", ")", ":", "return", "self", ".", "long_poll_notifications_with_http_info", "(", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "long_poll_notifications_with_http_info", "(", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
124.05
0.0008
def print_dependencies(_run): """Print the detected source-files and dependencies.""" print('Dependencies:') for dep in _run.experiment_info['dependencies']: pack, _, version = dep.partition('==') print(' {:<20} == {}'.format(pack, version)) print('\nSources:') for source, digest in _run.experiment_info['sources']: print(' {:<43} {}'.format(source, digest)) if _run.experiment_info['repositories']: repos = _run.experiment_info['repositories'] print('\nVersion Control:') for repo in repos: mod = COLOR_DIRTY + 'M' if repo['dirty'] else ' ' print('{} {:<43} {}'.format(mod, repo['url'], repo['commit']) + ENDC) print('')
[ "def", "print_dependencies", "(", "_run", ")", ":", "print", "(", "'Dependencies:'", ")", "for", "dep", "in", "_run", ".", "experiment_info", "[", "'dependencies'", "]", ":", "pack", ",", "_", ",", "version", "=", "dep", ".", "partition", "(", "'=='", ")", "print", "(", "' {:<20} == {}'", ".", "format", "(", "pack", ",", "version", ")", ")", "print", "(", "'\\nSources:'", ")", "for", "source", ",", "digest", "in", "_run", ".", "experiment_info", "[", "'sources'", "]", ":", "print", "(", "' {:<43} {}'", ".", "format", "(", "source", ",", "digest", ")", ")", "if", "_run", ".", "experiment_info", "[", "'repositories'", "]", ":", "repos", "=", "_run", ".", "experiment_info", "[", "'repositories'", "]", "print", "(", "'\\nVersion Control:'", ")", "for", "repo", "in", "repos", ":", "mod", "=", "COLOR_DIRTY", "+", "'M'", "if", "repo", "[", "'dirty'", "]", "else", "' '", "print", "(", "'{} {:<43} {}'", ".", "format", "(", "mod", ",", "repo", "[", "'url'", "]", ",", "repo", "[", "'commit'", "]", ")", "+", "ENDC", ")", "print", "(", "''", ")" ]
38.315789
0.00134
def relax_AX(self): """The parent class method that this method overrides only implements the relaxation step for the variables of the baseline consensus algorithm. This method calls the overridden method and then implements the relaxation step for the additional variables required for the mask decoupling modification to the baseline algorithm. """ super(ConvCnstrMODMaskDcpl_Consensus, self).relax_AX() self.AX1nr = sl.irfftn(sl.inner(self.Zf, self.swapaxes(self.Xf), axis=self.cri.axisM), self.cri.Nv, self.cri.axisN) if self.rlx == 1.0: self.AX1 = self.AX1nr else: alpha = self.rlx self.AX1 = alpha*self.AX1nr + (1-alpha)*(self.Y1 + self.S)
[ "def", "relax_AX", "(", "self", ")", ":", "super", "(", "ConvCnstrMODMaskDcpl_Consensus", ",", "self", ")", ".", "relax_AX", "(", ")", "self", ".", "AX1nr", "=", "sl", ".", "irfftn", "(", "sl", ".", "inner", "(", "self", ".", "Zf", ",", "self", ".", "swapaxes", "(", "self", ".", "Xf", ")", ",", "axis", "=", "self", ".", "cri", ".", "axisM", ")", ",", "self", ".", "cri", ".", "Nv", ",", "self", ".", "cri", ".", "axisN", ")", "if", "self", ".", "rlx", "==", "1.0", ":", "self", ".", "AX1", "=", "self", ".", "AX1nr", "else", ":", "alpha", "=", "self", ".", "rlx", "self", ".", "AX1", "=", "alpha", "*", "self", ".", "AX1nr", "+", "(", "1", "-", "alpha", ")", "*", "(", "self", ".", "Y1", "+", "self", ".", "S", ")" ]
45.777778
0.002378
def csrf_token(): """ Get csrf token or create new one """ from uliweb import request, settings from uliweb.utils.common import safe_str v = {} token_name = settings.CSRF.cookie_token_name if not request.session.deleted and request.session.get(token_name): v = request.session[token_name] if time.time() >= v['created_time'] + v['expiry_time']: v = {} else: v['created_time'] = time.time() if not v: token = request.cookies.get(token_name) if not token: token = uuid.uuid4().get_hex() v = {'token':token, 'expiry_time':settings.CSRF.timeout, 'created_time':time.time()} if not request.session.deleted: request.session[token_name] = v return safe_str(v['token'])
[ "def", "csrf_token", "(", ")", ":", "from", "uliweb", "import", "request", ",", "settings", "from", "uliweb", ".", "utils", ".", "common", "import", "safe_str", "v", "=", "{", "}", "token_name", "=", "settings", ".", "CSRF", ".", "cookie_token_name", "if", "not", "request", ".", "session", ".", "deleted", "and", "request", ".", "session", ".", "get", "(", "token_name", ")", ":", "v", "=", "request", ".", "session", "[", "token_name", "]", "if", "time", ".", "time", "(", ")", ">=", "v", "[", "'created_time'", "]", "+", "v", "[", "'expiry_time'", "]", ":", "v", "=", "{", "}", "else", ":", "v", "[", "'created_time'", "]", "=", "time", ".", "time", "(", ")", "if", "not", "v", ":", "token", "=", "request", ".", "cookies", ".", "get", "(", "token_name", ")", "if", "not", "token", ":", "token", "=", "uuid", ".", "uuid4", "(", ")", ".", "get_hex", "(", ")", "v", "=", "{", "'token'", ":", "token", ",", "'expiry_time'", ":", "settings", ".", "CSRF", ".", "timeout", ",", "'created_time'", ":", "time", ".", "time", "(", ")", "}", "if", "not", "request", ".", "session", ".", "deleted", ":", "request", ".", "session", "[", "token_name", "]", "=", "v", "return", "safe_str", "(", "v", "[", "'token'", "]", ")" ]
31.52
0.008621
def _position_and_velocity_TEME_km(self, t): """Return the raw true equator mean equinox (TEME) vectors from SGP4. Returns a tuple of NumPy arrays ``([x y z], [xdot ydot zdot])`` expressed in kilometers and kilometers per second. Note that we assume the TLE epoch to be a UTC date, per AIAA 2006-6753. """ sat = self.model minutes_past_epoch = (t._utc_float() - sat.jdsatepoch) * 1440.0 if getattr(minutes_past_epoch, 'shape', None): position = [] velocity = [] error = [] for m in minutes_past_epoch: p, v = sgp4(sat, m) position.append(p) velocity.append(v) error.append(sat.error_message) return array(position).T, array(velocity).T, error else: position, velocity = sgp4(sat, minutes_past_epoch) return array(position), array(velocity), sat.error_message
[ "def", "_position_and_velocity_TEME_km", "(", "self", ",", "t", ")", ":", "sat", "=", "self", ".", "model", "minutes_past_epoch", "=", "(", "t", ".", "_utc_float", "(", ")", "-", "sat", ".", "jdsatepoch", ")", "*", "1440.0", "if", "getattr", "(", "minutes_past_epoch", ",", "'shape'", ",", "None", ")", ":", "position", "=", "[", "]", "velocity", "=", "[", "]", "error", "=", "[", "]", "for", "m", "in", "minutes_past_epoch", ":", "p", ",", "v", "=", "sgp4", "(", "sat", ",", "m", ")", "position", ".", "append", "(", "p", ")", "velocity", ".", "append", "(", "v", ")", "error", ".", "append", "(", "sat", ".", "error_message", ")", "return", "array", "(", "position", ")", ".", "T", ",", "array", "(", "velocity", ")", ".", "T", ",", "error", "else", ":", "position", ",", "velocity", "=", "sgp4", "(", "sat", ",", "minutes_past_epoch", ")", "return", "array", "(", "position", ")", ",", "array", "(", "velocity", ")", ",", "sat", ".", "error_message" ]
41.695652
0.002039
def get_term(self,term_id): """ Returns the term object for the supplied identifier @type term_id: string @param term_id: term identifier """ if term_id in self.idx: return Cterm(self.idx[term_id],self.type) else: return None
[ "def", "get_term", "(", "self", ",", "term_id", ")", ":", "if", "term_id", "in", "self", ".", "idx", ":", "return", "Cterm", "(", "self", ".", "idx", "[", "term_id", "]", ",", "self", ".", "type", ")", "else", ":", "return", "None" ]
29.6
0.013115
def wait(self, timeout_s: float = None) -> int: """ Wait for up to ``timeout_s`` for the child process to finish. Args: timeout_s: maximum time to wait or ``None`` to wait forever Returns: process return code; or ``0`` if it wasn't running, or ``1`` if it managed to exit without a return code Raises: subprocess.TimeoutExpired: if the process continues to run """ if not self.running: return 0 retcode = self.process.wait(timeout=timeout_s) # We won't get further unless the process has stopped. if retcode is None: self.error("Subprocess finished, but return code was None") retcode = 1 # we're promising to return an int elif retcode == 0: self.info("Subprocess finished cleanly (return code 0).") else: self.error( "Subprocess finished, but FAILED (return code {}). " "Logs were: {} (stdout), {} (stderr)".format( retcode, self.details.logfile_out, self.details.logfile_err)) self.running = False return retcode
[ "def", "wait", "(", "self", ",", "timeout_s", ":", "float", "=", "None", ")", "->", "int", ":", "if", "not", "self", ".", "running", ":", "return", "0", "retcode", "=", "self", ".", "process", ".", "wait", "(", "timeout", "=", "timeout_s", ")", "# We won't get further unless the process has stopped.", "if", "retcode", "is", "None", ":", "self", ".", "error", "(", "\"Subprocess finished, but return code was None\"", ")", "retcode", "=", "1", "# we're promising to return an int", "elif", "retcode", "==", "0", ":", "self", ".", "info", "(", "\"Subprocess finished cleanly (return code 0).\"", ")", "else", ":", "self", ".", "error", "(", "\"Subprocess finished, but FAILED (return code {}). \"", "\"Logs were: {} (stdout), {} (stderr)\"", ".", "format", "(", "retcode", ",", "self", ".", "details", ".", "logfile_out", ",", "self", ".", "details", ".", "logfile_err", ")", ")", "self", ".", "running", "=", "False", "return", "retcode" ]
36.363636
0.001623
def _decode_filename_to_unicode(f): '''Get bytestring filename and return unicode. First, try to decode from default file system encoding If that fails, use ``chardet`` module to guess encoding. As a last resort, try to decode as utf-8. If the argument already is unicode, return as is''' log.debug('_decode_filename_to_unicode(%s)', repr(f)) if isinstance(f, unicode): return f try: return f.decode(sys.getfilesystemencoding()) except UnicodeDecodeError: charguess = chardet.detect(f) log.debug("chardet filename: %r -> %r", f, charguess) if charguess['encoding'] is not None: try: return f.decode(charguess['encoding']) except UnicodeDecodeError: pass log.warning('Cannot understand decoding of this filename: %r (guessed %r, but was wrong)', f, charguess) log.debug('Trying utf-8 to decode %r', f) try: return f.decode('utf-8') except UnicodeDecodeError: pass log.debug('Trying latin1 to decode %r', f) try: return f.decode('latin1') except UnicodeDecodeError: log.warning('Exhausted all options. Decoding %r to safe ascii', f) return f.decode('ascii', errors='ignore')
[ "def", "_decode_filename_to_unicode", "(", "f", ")", ":", "log", ".", "debug", "(", "'_decode_filename_to_unicode(%s)'", ",", "repr", "(", "f", ")", ")", "if", "isinstance", "(", "f", ",", "unicode", ")", ":", "return", "f", "try", ":", "return", "f", ".", "decode", "(", "sys", ".", "getfilesystemencoding", "(", ")", ")", "except", "UnicodeDecodeError", ":", "charguess", "=", "chardet", ".", "detect", "(", "f", ")", "log", ".", "debug", "(", "\"chardet filename: %r -> %r\"", ",", "f", ",", "charguess", ")", "if", "charguess", "[", "'encoding'", "]", "is", "not", "None", ":", "try", ":", "return", "f", ".", "decode", "(", "charguess", "[", "'encoding'", "]", ")", "except", "UnicodeDecodeError", ":", "pass", "log", ".", "warning", "(", "'Cannot understand decoding of this filename: %r (guessed %r, but was wrong)'", ",", "f", ",", "charguess", ")", "log", ".", "debug", "(", "'Trying utf-8 to decode %r'", ",", "f", ")", "try", ":", "return", "f", ".", "decode", "(", "'utf-8'", ")", "except", "UnicodeDecodeError", ":", "pass", "log", ".", "debug", "(", "'Trying latin1 to decode %r'", ",", "f", ")", "try", ":", "return", "f", ".", "decode", "(", "'latin1'", ")", "except", "UnicodeDecodeError", ":", "log", ".", "warning", "(", "'Exhausted all options. Decoding %r to safe ascii'", ",", "f", ")", "return", "f", ".", "decode", "(", "'ascii'", ",", "errors", "=", "'ignore'", ")" ]
38.5
0.00149
def find_by_id(self, repoid): """ Returns the repo with the specified <repoid> """ for row in self.jsondata: if repoid == row["repoid"]: return self._infofromdict(row)
[ "def", "find_by_id", "(", "self", ",", "repoid", ")", ":", "for", "row", "in", "self", ".", "jsondata", ":", "if", "repoid", "==", "row", "[", "\"repoid\"", "]", ":", "return", "self", ".", "_infofromdict", "(", "row", ")" ]
31.571429
0.008811
def collect(path, no_input): '''Collect static files''' if exists(path): msg = '"%s" directory already exists and will be erased' log.warning(msg, path) if not no_input: click.confirm('Are you sure?', abort=True) log.info('Deleting static directory "%s"', path) shutil.rmtree(path) prefix = current_app.static_url_path or current_app.static_folder if prefix.startswith('/'): prefix = prefix[1:] destination = join(path, prefix) log.info('Copying application assets into "%s"', destination) shutil.copytree(current_app.static_folder, destination) for blueprint in current_app.blueprints.values(): if blueprint.has_static_folder: prefix = current_app.static_prefixes.get(blueprint.name) prefix = prefix or blueprint.url_prefix or '' prefix += blueprint.static_url_path or '' if prefix.startswith('/'): prefix = prefix[1:] log.info('Copying %s assets to %s', blueprint.name, prefix) destination = join(path, prefix) copy_recursive(blueprint.static_folder, destination) for prefix, source in current_app.config['STATIC_DIRS']: log.info('Copying %s to %s', source, prefix) destination = join(path, prefix) copy_recursive(source, destination) log.info('Done')
[ "def", "collect", "(", "path", ",", "no_input", ")", ":", "if", "exists", "(", "path", ")", ":", "msg", "=", "'\"%s\" directory already exists and will be erased'", "log", ".", "warning", "(", "msg", ",", "path", ")", "if", "not", "no_input", ":", "click", ".", "confirm", "(", "'Are you sure?'", ",", "abort", "=", "True", ")", "log", ".", "info", "(", "'Deleting static directory \"%s\"'", ",", "path", ")", "shutil", ".", "rmtree", "(", "path", ")", "prefix", "=", "current_app", ".", "static_url_path", "or", "current_app", ".", "static_folder", "if", "prefix", ".", "startswith", "(", "'/'", ")", ":", "prefix", "=", "prefix", "[", "1", ":", "]", "destination", "=", "join", "(", "path", ",", "prefix", ")", "log", ".", "info", "(", "'Copying application assets into \"%s\"'", ",", "destination", ")", "shutil", ".", "copytree", "(", "current_app", ".", "static_folder", ",", "destination", ")", "for", "blueprint", "in", "current_app", ".", "blueprints", ".", "values", "(", ")", ":", "if", "blueprint", ".", "has_static_folder", ":", "prefix", "=", "current_app", ".", "static_prefixes", ".", "get", "(", "blueprint", ".", "name", ")", "prefix", "=", "prefix", "or", "blueprint", ".", "url_prefix", "or", "''", "prefix", "+=", "blueprint", ".", "static_url_path", "or", "''", "if", "prefix", ".", "startswith", "(", "'/'", ")", ":", "prefix", "=", "prefix", "[", "1", ":", "]", "log", ".", "info", "(", "'Copying %s assets to %s'", ",", "blueprint", ".", "name", ",", "prefix", ")", "destination", "=", "join", "(", "path", ",", "prefix", ")", "copy_recursive", "(", "blueprint", ".", "static_folder", ",", "destination", ")", "for", "prefix", ",", "source", "in", "current_app", ".", "config", "[", "'STATIC_DIRS'", "]", ":", "log", ".", "info", "(", "'Copying %s to %s'", ",", "source", ",", "prefix", ")", "destination", "=", "join", "(", "path", ",", "prefix", ")", "copy_recursive", "(", "source", ",", "destination", ")", "log", ".", "info", "(", "'Done'", ")" ]
37.666667
0.000719
def alignment_correcter(self, alignment_file_list, output_file_name, filter_minimum=None): ''' Remove lower case insertions in alignment outputs from HMM align. Give a list of alignments, and an output file name, and each alignment will be corrected, and written to a single file, ready to be placed together using pplacer. Parameters ---------- alignment_file_list : array List of strings, each the path to different alignments from the inputs provided to GraftM output_file_name : str The path and filename of the output file desired. filter_minimum : int minimum number of positions that must be aligned for each sequence Returns ------- True or False, depending if reads were written to file ''' corrected_sequences = {} for alignment_file in alignment_file_list: insert_list = [] # Define list containing inserted positions to be removed (lower case characters) sequence_list = list(SeqIO.parse(open(alignment_file, 'r'), 'fasta')) for sequence in sequence_list: # For each sequence in the alignment for idx, nt in enumerate(list(sequence.seq)): # For each nucleotide in the sequence if nt.islower(): # Check for lower case character insert_list.append(idx) # Add to the insert list if it is insert_list = list(OrderedDict.fromkeys(sorted(insert_list, reverse=True))) # Reverse the list and remove duplicate positions for sequence in sequence_list: # For each sequence in the alignment new_seq = list(sequence.seq) # Define a list of sequences to be iterable list for writing for position in insert_list: # For each position in the removal list del new_seq[position] # Delete that inserted position in every sequence corrected_sequences['>' + sequence.id + '\n'] = (''.join(new_seq) + '\n').replace('~', '-') pre_filter_count=len(corrected_sequences) if filter_minimum: # Use '>' not '>=' here because the sequence is on a single line, # but also includes a newline character at the end of the sequence corrected_sequences={key:item for key, item in corrected_sequences.iteritems() if len(item.replace('-', '')) > filter_minimum} post_filter_count=len(corrected_sequences) logging.info("Filtered %i short sequences from the alignment" % \ (pre_filter_count-post_filter_count) ) logging.info("%i sequences remaining" % post_filter_count) if len(corrected_sequences) >= 1: with open(output_file_name, 'w') as output_file: # Create an open file to write the new sequences to for fasta_id, fasta_seq in corrected_sequences.iteritems(): output_file.write(fasta_id) output_file.write(fasta_seq) return True else: return False
[ "def", "alignment_correcter", "(", "self", ",", "alignment_file_list", ",", "output_file_name", ",", "filter_minimum", "=", "None", ")", ":", "corrected_sequences", "=", "{", "}", "for", "alignment_file", "in", "alignment_file_list", ":", "insert_list", "=", "[", "]", "# Define list containing inserted positions to be removed (lower case characters)", "sequence_list", "=", "list", "(", "SeqIO", ".", "parse", "(", "open", "(", "alignment_file", ",", "'r'", ")", ",", "'fasta'", ")", ")", "for", "sequence", "in", "sequence_list", ":", "# For each sequence in the alignment", "for", "idx", ",", "nt", "in", "enumerate", "(", "list", "(", "sequence", ".", "seq", ")", ")", ":", "# For each nucleotide in the sequence", "if", "nt", ".", "islower", "(", ")", ":", "# Check for lower case character", "insert_list", ".", "append", "(", "idx", ")", "# Add to the insert list if it is", "insert_list", "=", "list", "(", "OrderedDict", ".", "fromkeys", "(", "sorted", "(", "insert_list", ",", "reverse", "=", "True", ")", ")", ")", "# Reverse the list and remove duplicate positions", "for", "sequence", "in", "sequence_list", ":", "# For each sequence in the alignment", "new_seq", "=", "list", "(", "sequence", ".", "seq", ")", "# Define a list of sequences to be iterable list for writing", "for", "position", "in", "insert_list", ":", "# For each position in the removal list", "del", "new_seq", "[", "position", "]", "# Delete that inserted position in every sequence", "corrected_sequences", "[", "'>'", "+", "sequence", ".", "id", "+", "'\\n'", "]", "=", "(", "''", ".", "join", "(", "new_seq", ")", "+", "'\\n'", ")", ".", "replace", "(", "'~'", ",", "'-'", ")", "pre_filter_count", "=", "len", "(", "corrected_sequences", ")", "if", "filter_minimum", ":", "# Use '>' not '>=' here because the sequence is on a single line, ", "# but also includes a newline character at the end of the sequence", "corrected_sequences", "=", "{", "key", ":", "item", "for", "key", ",", "item", "in", "corrected_sequences", ".", "iteritems", "(", ")", "if", "len", "(", "item", ".", "replace", "(", "'-'", ",", "''", ")", ")", ">", "filter_minimum", "}", "post_filter_count", "=", "len", "(", "corrected_sequences", ")", "logging", ".", "info", "(", "\"Filtered %i short sequences from the alignment\"", "%", "(", "pre_filter_count", "-", "post_filter_count", ")", ")", "logging", ".", "info", "(", "\"%i sequences remaining\"", "%", "post_filter_count", ")", "if", "len", "(", "corrected_sequences", ")", ">=", "1", ":", "with", "open", "(", "output_file_name", ",", "'w'", ")", "as", "output_file", ":", "# Create an open file to write the new sequences to", "for", "fasta_id", ",", "fasta_seq", "in", "corrected_sequences", ".", "iteritems", "(", ")", ":", "output_file", ".", "write", "(", "fasta_id", ")", "output_file", ".", "write", "(", "fasta_seq", ")", "return", "True", "else", ":", "return", "False" ]
53.169492
0.008764
def sequence_to_dt64ns(data, dtype=None, copy=False, tz=None, dayfirst=False, yearfirst=False, ambiguous='raise', int_as_wall_time=False): """ Parameters ---------- data : list-like dtype : dtype, str, or None, default None copy : bool, default False tz : tzinfo, str, or None, default None dayfirst : bool, default False yearfirst : bool, default False ambiguous : str, bool, or arraylike, default 'raise' See pandas._libs.tslibs.conversion.tz_localize_to_utc int_as_wall_time : bool, default False Whether to treat ints as wall time in specified timezone, or as nanosecond-precision UNIX epoch (wall time in UTC). This is used in DatetimeIndex.__init__ to deprecate the wall-time behaviour. ..versionadded:: 0.24.0 Returns ------- result : numpy.ndarray The sequence converted to a numpy array with dtype ``datetime64[ns]``. tz : tzinfo or None Either the user-provided tzinfo or one inferred from the data. inferred_freq : Tick or None The inferred frequency of the sequence. Raises ------ TypeError : PeriodDType data is passed """ inferred_freq = None dtype = _validate_dt64_dtype(dtype) if not hasattr(data, "dtype"): # e.g. list, tuple if np.ndim(data) == 0: # i.e. generator data = list(data) data = np.asarray(data) copy = False elif isinstance(data, ABCSeries): data = data._values if isinstance(data, ABCPandasArray): data = data.to_numpy() if hasattr(data, "freq"): # i.e. DatetimeArray/Index inferred_freq = data.freq # if dtype has an embedded tz, capture it tz = validate_tz_from_dtype(dtype, tz) if isinstance(data, ABCIndexClass): data = data._data # By this point we are assured to have either a numpy array or Index data, copy = maybe_convert_dtype(data, copy) if is_object_dtype(data) or is_string_dtype(data): # TODO: We do not have tests specific to string-dtypes, # also complex or categorical or other extension copy = False if lib.infer_dtype(data, skipna=False) == 'integer': data = data.astype(np.int64) else: # data comes back here as either i8 to denote UTC timestamps # or M8[ns] to denote wall times data, inferred_tz = objects_to_datetime64ns( data, dayfirst=dayfirst, yearfirst=yearfirst) tz = maybe_infer_tz(tz, inferred_tz) # When a sequence of timestamp objects is passed, we always # want to treat the (now i8-valued) data as UTC timestamps, # not wall times. int_as_wall_time = False # `data` may have originally been a Categorical[datetime64[ns, tz]], # so we need to handle these types. if is_datetime64tz_dtype(data): # DatetimeArray -> ndarray tz = maybe_infer_tz(tz, data.tz) result = data._data elif is_datetime64_dtype(data): # tz-naive DatetimeArray or ndarray[datetime64] data = getattr(data, "_data", data) if data.dtype != _NS_DTYPE: data = conversion.ensure_datetime64ns(data) if tz is not None: # Convert tz-naive to UTC tz = timezones.maybe_get_tz(tz) data = conversion.tz_localize_to_utc(data.view('i8'), tz, ambiguous=ambiguous) data = data.view(_NS_DTYPE) assert data.dtype == _NS_DTYPE, data.dtype result = data else: # must be integer dtype otherwise # assume this data are epoch timestamps if tz: tz = timezones.maybe_get_tz(tz) if data.dtype != _INT64_DTYPE: data = data.astype(np.int64, copy=False) if int_as_wall_time and tz is not None and not timezones.is_utc(tz): warnings.warn(_i8_message, FutureWarning, stacklevel=4) data = conversion.tz_localize_to_utc(data.view('i8'), tz, ambiguous=ambiguous) data = data.view(_NS_DTYPE) result = data.view(_NS_DTYPE) if copy: # TODO: should this be deepcopy? result = result.copy() assert isinstance(result, np.ndarray), type(result) assert result.dtype == 'M8[ns]', result.dtype # We have to call this again after possibly inferring a tz above validate_tz_from_dtype(dtype, tz) return result, tz, inferred_freq
[ "def", "sequence_to_dt64ns", "(", "data", ",", "dtype", "=", "None", ",", "copy", "=", "False", ",", "tz", "=", "None", ",", "dayfirst", "=", "False", ",", "yearfirst", "=", "False", ",", "ambiguous", "=", "'raise'", ",", "int_as_wall_time", "=", "False", ")", ":", "inferred_freq", "=", "None", "dtype", "=", "_validate_dt64_dtype", "(", "dtype", ")", "if", "not", "hasattr", "(", "data", ",", "\"dtype\"", ")", ":", "# e.g. list, tuple", "if", "np", ".", "ndim", "(", "data", ")", "==", "0", ":", "# i.e. generator", "data", "=", "list", "(", "data", ")", "data", "=", "np", ".", "asarray", "(", "data", ")", "copy", "=", "False", "elif", "isinstance", "(", "data", ",", "ABCSeries", ")", ":", "data", "=", "data", ".", "_values", "if", "isinstance", "(", "data", ",", "ABCPandasArray", ")", ":", "data", "=", "data", ".", "to_numpy", "(", ")", "if", "hasattr", "(", "data", ",", "\"freq\"", ")", ":", "# i.e. DatetimeArray/Index", "inferred_freq", "=", "data", ".", "freq", "# if dtype has an embedded tz, capture it", "tz", "=", "validate_tz_from_dtype", "(", "dtype", ",", "tz", ")", "if", "isinstance", "(", "data", ",", "ABCIndexClass", ")", ":", "data", "=", "data", ".", "_data", "# By this point we are assured to have either a numpy array or Index", "data", ",", "copy", "=", "maybe_convert_dtype", "(", "data", ",", "copy", ")", "if", "is_object_dtype", "(", "data", ")", "or", "is_string_dtype", "(", "data", ")", ":", "# TODO: We do not have tests specific to string-dtypes,", "# also complex or categorical or other extension", "copy", "=", "False", "if", "lib", ".", "infer_dtype", "(", "data", ",", "skipna", "=", "False", ")", "==", "'integer'", ":", "data", "=", "data", ".", "astype", "(", "np", ".", "int64", ")", "else", ":", "# data comes back here as either i8 to denote UTC timestamps", "# or M8[ns] to denote wall times", "data", ",", "inferred_tz", "=", "objects_to_datetime64ns", "(", "data", ",", "dayfirst", "=", "dayfirst", ",", "yearfirst", "=", "yearfirst", ")", "tz", "=", "maybe_infer_tz", "(", "tz", ",", "inferred_tz", ")", "# When a sequence of timestamp objects is passed, we always", "# want to treat the (now i8-valued) data as UTC timestamps,", "# not wall times.", "int_as_wall_time", "=", "False", "# `data` may have originally been a Categorical[datetime64[ns, tz]],", "# so we need to handle these types.", "if", "is_datetime64tz_dtype", "(", "data", ")", ":", "# DatetimeArray -> ndarray", "tz", "=", "maybe_infer_tz", "(", "tz", ",", "data", ".", "tz", ")", "result", "=", "data", ".", "_data", "elif", "is_datetime64_dtype", "(", "data", ")", ":", "# tz-naive DatetimeArray or ndarray[datetime64]", "data", "=", "getattr", "(", "data", ",", "\"_data\"", ",", "data", ")", "if", "data", ".", "dtype", "!=", "_NS_DTYPE", ":", "data", "=", "conversion", ".", "ensure_datetime64ns", "(", "data", ")", "if", "tz", "is", "not", "None", ":", "# Convert tz-naive to UTC", "tz", "=", "timezones", ".", "maybe_get_tz", "(", "tz", ")", "data", "=", "conversion", ".", "tz_localize_to_utc", "(", "data", ".", "view", "(", "'i8'", ")", ",", "tz", ",", "ambiguous", "=", "ambiguous", ")", "data", "=", "data", ".", "view", "(", "_NS_DTYPE", ")", "assert", "data", ".", "dtype", "==", "_NS_DTYPE", ",", "data", ".", "dtype", "result", "=", "data", "else", ":", "# must be integer dtype otherwise", "# assume this data are epoch timestamps", "if", "tz", ":", "tz", "=", "timezones", ".", "maybe_get_tz", "(", "tz", ")", "if", "data", ".", "dtype", "!=", "_INT64_DTYPE", ":", "data", "=", "data", ".", "astype", "(", "np", ".", "int64", ",", "copy", "=", "False", ")", "if", "int_as_wall_time", "and", "tz", "is", "not", "None", "and", "not", "timezones", ".", "is_utc", "(", "tz", ")", ":", "warnings", ".", "warn", "(", "_i8_message", ",", "FutureWarning", ",", "stacklevel", "=", "4", ")", "data", "=", "conversion", ".", "tz_localize_to_utc", "(", "data", ".", "view", "(", "'i8'", ")", ",", "tz", ",", "ambiguous", "=", "ambiguous", ")", "data", "=", "data", ".", "view", "(", "_NS_DTYPE", ")", "result", "=", "data", ".", "view", "(", "_NS_DTYPE", ")", "if", "copy", ":", "# TODO: should this be deepcopy?", "result", "=", "result", ".", "copy", "(", ")", "assert", "isinstance", "(", "result", ",", "np", ".", "ndarray", ")", ",", "type", "(", "result", ")", "assert", "result", ".", "dtype", "==", "'M8[ns]'", ",", "result", ".", "dtype", "# We have to call this again after possibly inferring a tz above", "validate_tz_from_dtype", "(", "dtype", ",", "tz", ")", "return", "result", ",", "tz", ",", "inferred_freq" ]
34.348485
0.000214
def remove_too_short(utterances: List[Utterance], _winlen=25, winstep=10) -> List[Utterance]: """ Removes utterances that will probably have issues with CTC because of the number of frames being less than the number of tokens in the transcription. Assuming char tokenization to minimize false negatives. """ def is_too_short(utterance: Utterance) -> bool: charlen = len(utterance.text) if (duration(utterance) / winstep) < charlen: return True else: return False return [utter for utter in utterances if not is_too_short(utter)]
[ "def", "remove_too_short", "(", "utterances", ":", "List", "[", "Utterance", "]", ",", "_winlen", "=", "25", ",", "winstep", "=", "10", ")", "->", "List", "[", "Utterance", "]", ":", "def", "is_too_short", "(", "utterance", ":", "Utterance", ")", "->", "bool", ":", "charlen", "=", "len", "(", "utterance", ".", "text", ")", "if", "(", "duration", "(", "utterance", ")", "/", "winstep", ")", "<", "charlen", ":", "return", "True", "else", ":", "return", "False", "return", "[", "utter", "for", "utter", "in", "utterances", "if", "not", "is_too_short", "(", "utter", ")", "]" ]
43.5
0.001608
def port_pair(self): """The port and it's transport as a pair""" if self.transport is NotSpecified: return (self.port, "tcp") else: return (self.port, self.transport)
[ "def", "port_pair", "(", "self", ")", ":", "if", "self", ".", "transport", "is", "NotSpecified", ":", "return", "(", "self", ".", "port", ",", "\"tcp\"", ")", "else", ":", "return", "(", "self", ".", "port", ",", "self", ".", "transport", ")" ]
34.833333
0.009346
def find_sanitizer_from_module(module_name, function_name): """ Attempts to find sanitizer function from given module. If the module cannot be imported, or function with given name does not exist in it, nothing will be returned by this method. Otherwise the found sanitizer function will be returned. :param module_name: Name of the module to import the function from. :type module_name: str :param function_name: Name of the function to look for inside the module. :type function_name: str :return: Sanitizer function found from the module, if it can be imported and it indeed contains function with the given name. Otherwise None will be returned instead. :rtype: callback|None """ try: module = importlib.import_module(module_name) except ImportError: return None # Look for the function inside the module. At this point it could be # pretty much anything. callback = getattr(module, function_name, None) # Function does not exist in this module? Give up. if callback is None: return None # It's actually callable function? Return it. if callable(callback): return callback # Sanitizer seems to be something else than a function. Throw an # exception to report such problem. raise ConfigurationError("'%s' in '%s' is %s instead of function" % ( function_name, module_name, type(callback), ))
[ "def", "find_sanitizer_from_module", "(", "module_name", ",", "function_name", ")", ":", "try", ":", "module", "=", "importlib", ".", "import_module", "(", "module_name", ")", "except", "ImportError", ":", "return", "None", "# Look for the function inside the module. At this point it could be", "# pretty much anything.", "callback", "=", "getattr", "(", "module", ",", "function_name", ",", "None", ")", "# Function does not exist in this module? Give up.", "if", "callback", "is", "None", ":", "return", "None", "# It's actually callable function? Return it.", "if", "callable", "(", "callback", ")", ":", "return", "callback", "# Sanitizer seems to be something else than a function. Throw an", "# exception to report such problem.", "raise", "ConfigurationError", "(", "\"'%s' in '%s' is %s instead of function\"", "%", "(", "function_name", ",", "module_name", ",", "type", "(", "callback", ")", ",", ")", ")" ]
37.372093
0.001213
def bar(h1: Histogram1D, **kwargs) -> dict: """Bar plot of 1D histogram. Parameters ---------- lw : float Width of the line between bars alpha : float Opacity of the bars hover_alpha: float Opacity of the bars when hover on """ # TODO: Enable collections # TODO: Enable legend vega = _create_figure(kwargs) _add_title(h1, vega, kwargs) _create_scales(h1, vega, kwargs) _create_axes(h1, vega, kwargs) data = get_data(h1, kwargs.pop("density", None), kwargs.pop("cumulative", None)).tolist() lefts = h1.bin_left_edges.astype(float).tolist() rights = h1.bin_right_edges.astype(float).tolist() vega["data"] = [{ "name": "table", "values": [{ "x": lefts[i], "x2": rights[i], "y": data[i], } for i in range(h1.bin_count) ] }] alpha = kwargs.pop("alpha", 1) # hover_alpha = kwargs.pop("hover_alpha", alpha) vega["marks"] = [ { "type": "rect", "from": {"data": "table"}, "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "x2": {"scale": "xscale", "field": "x2"}, "y": {"scale": "yscale", "value": 0}, "y2": {"scale": "yscale", "field": "y"}, # "stroke": {"scale": "color", "field": "c"}, "strokeWidth": {"value": kwargs.pop("lw", 2)} }, "update": { "fillOpacity": [ # {"test": "datum === tooltip", "value": hover_alpha}, {"value": alpha} ] }, } } ] _create_tooltips(h1, vega, kwargs) return vega
[ "def", "bar", "(", "h1", ":", "Histogram1D", ",", "*", "*", "kwargs", ")", "->", "dict", ":", "# TODO: Enable collections", "# TODO: Enable legend", "vega", "=", "_create_figure", "(", "kwargs", ")", "_add_title", "(", "h1", ",", "vega", ",", "kwargs", ")", "_create_scales", "(", "h1", ",", "vega", ",", "kwargs", ")", "_create_axes", "(", "h1", ",", "vega", ",", "kwargs", ")", "data", "=", "get_data", "(", "h1", ",", "kwargs", ".", "pop", "(", "\"density\"", ",", "None", ")", ",", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "None", ")", ")", ".", "tolist", "(", ")", "lefts", "=", "h1", ".", "bin_left_edges", ".", "astype", "(", "float", ")", ".", "tolist", "(", ")", "rights", "=", "h1", ".", "bin_right_edges", ".", "astype", "(", "float", ")", ".", "tolist", "(", ")", "vega", "[", "\"data\"", "]", "=", "[", "{", "\"name\"", ":", "\"table\"", ",", "\"values\"", ":", "[", "{", "\"x\"", ":", "lefts", "[", "i", "]", ",", "\"x2\"", ":", "rights", "[", "i", "]", ",", "\"y\"", ":", "data", "[", "i", "]", ",", "}", "for", "i", "in", "range", "(", "h1", ".", "bin_count", ")", "]", "}", "]", "alpha", "=", "kwargs", ".", "pop", "(", "\"alpha\"", ",", "1", ")", "# hover_alpha = kwargs.pop(\"hover_alpha\", alpha)", "vega", "[", "\"marks\"", "]", "=", "[", "{", "\"type\"", ":", "\"rect\"", ",", "\"from\"", ":", "{", "\"data\"", ":", "\"table\"", "}", ",", "\"encode\"", ":", "{", "\"enter\"", ":", "{", "\"x\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"field\"", ":", "\"x\"", "}", ",", "\"x2\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"field\"", ":", "\"x2\"", "}", ",", "\"y\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"value\"", ":", "0", "}", ",", "\"y2\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"field\"", ":", "\"y\"", "}", ",", "# \"stroke\": {\"scale\": \"color\", \"field\": \"c\"},", "\"strokeWidth\"", ":", "{", "\"value\"", ":", "kwargs", ".", "pop", "(", "\"lw\"", ",", "2", ")", "}", "}", ",", "\"update\"", ":", "{", "\"fillOpacity\"", ":", "[", "# {\"test\": \"datum === tooltip\", \"value\": hover_alpha},", "{", "\"value\"", ":", "alpha", "}", "]", "}", ",", "}", "}", "]", "_create_tooltips", "(", "h1", ",", "vega", ",", "kwargs", ")", "return", "vega" ]
28.52381
0.001076
def print_upper_triangular_matrix_as_complete(matrix): """Prints a CVRP data dict upper triangular matrix as a normal matrix Doesn't print headers. Arguments --------- matrix : dict Description """ for i in sorted(matrix.keys()): for j in sorted(matrix.keys()): a, b = i, j if a > b: a, b = b, a print(matrix[a][b], end=' ') print()
[ "def", "print_upper_triangular_matrix_as_complete", "(", "matrix", ")", ":", "for", "i", "in", "sorted", "(", "matrix", ".", "keys", "(", ")", ")", ":", "for", "j", "in", "sorted", "(", "matrix", ".", "keys", "(", ")", ")", ":", "a", ",", "b", "=", "i", ",", "j", "if", "a", ">", "b", ":", "a", ",", "b", "=", "b", ",", "a", "print", "(", "matrix", "[", "a", "]", "[", "b", "]", ",", "end", "=", "' '", ")", "print", "(", ")" ]
21.9
0.008753
def reshape_like_all_dims(a, b): """Reshapes a to match the shape of b.""" ret = tf.reshape(a, tf.shape(b)) if not tf.executing_eagerly(): ret.set_shape(b.get_shape()) return ret
[ "def", "reshape_like_all_dims", "(", "a", ",", "b", ")", ":", "ret", "=", "tf", ".", "reshape", "(", "a", ",", "tf", ".", "shape", "(", "b", ")", ")", "if", "not", "tf", ".", "executing_eagerly", "(", ")", ":", "ret", ".", "set_shape", "(", "b", ".", "get_shape", "(", ")", ")", "return", "ret" ]
30.833333
0.026316
def write_tree_newick(self, filename, hide_rooted_prefix=False): '''Write this ``Tree`` to a Newick file Args: ``filename`` (``str``): Path to desired output file (plain-text or gzipped) ''' if not isinstance(filename, str): raise TypeError("filename must be a str") treestr = self.newick() if hide_rooted_prefix: if treestr.startswith('[&R]'): treestr = treestr[4:].strip() else: warn("Specified hide_rooted_prefix, but tree was not rooted") if filename.lower().endswith('.gz'): # gzipped file f = gopen(expanduser(filename),'wb',9); f.write(treestr.encode()); f.close() else: # plain-text file f = open(expanduser(filename),'w'); f.write(treestr); f.close()
[ "def", "write_tree_newick", "(", "self", ",", "filename", ",", "hide_rooted_prefix", "=", "False", ")", ":", "if", "not", "isinstance", "(", "filename", ",", "str", ")", ":", "raise", "TypeError", "(", "\"filename must be a str\"", ")", "treestr", "=", "self", ".", "newick", "(", ")", "if", "hide_rooted_prefix", ":", "if", "treestr", ".", "startswith", "(", "'[&R]'", ")", ":", "treestr", "=", "treestr", "[", "4", ":", "]", ".", "strip", "(", ")", "else", ":", "warn", "(", "\"Specified hide_rooted_prefix, but tree was not rooted\"", ")", "if", "filename", ".", "lower", "(", ")", ".", "endswith", "(", "'.gz'", ")", ":", "# gzipped file", "f", "=", "gopen", "(", "expanduser", "(", "filename", ")", ",", "'wb'", ",", "9", ")", "f", ".", "write", "(", "treestr", ".", "encode", "(", ")", ")", "f", ".", "close", "(", ")", "else", ":", "# plain-text file", "f", "=", "open", "(", "expanduser", "(", "filename", ")", ",", "'w'", ")", "f", ".", "write", "(", "treestr", ")", "f", ".", "close", "(", ")" ]
45.055556
0.0157
def values(self, key_type=None): """ Returns a copy of the dictionary's values. @param key_type if specified, only values pointed by keys of this type will be returned. Otherwise list of all values contained in this dictionary will be returned.""" if(key_type is not None): all_items = {} # in order to preserve keys() type (dict_values for python3) keys_used = set() direct_key = str(key_type) if direct_key in self.__dict__: for intermediate_key in self.__dict__[direct_key].values(): if not intermediate_key in keys_used: all_items[intermediate_key] = self.items_dict[intermediate_key] keys_used.add(intermediate_key) return all_items.values() else: return self.items_dict.values()
[ "def", "values", "(", "self", ",", "key_type", "=", "None", ")", ":", "if", "(", "key_type", "is", "not", "None", ")", ":", "all_items", "=", "{", "}", "# in order to preserve keys() type (dict_values for python3) \r", "keys_used", "=", "set", "(", ")", "direct_key", "=", "str", "(", "key_type", ")", "if", "direct_key", "in", "self", ".", "__dict__", ":", "for", "intermediate_key", "in", "self", ".", "__dict__", "[", "direct_key", "]", ".", "values", "(", ")", ":", "if", "not", "intermediate_key", "in", "keys_used", ":", "all_items", "[", "intermediate_key", "]", "=", "self", ".", "items_dict", "[", "intermediate_key", "]", "keys_used", ".", "add", "(", "intermediate_key", ")", "return", "all_items", ".", "values", "(", ")", "else", ":", "return", "self", ".", "items_dict", ".", "values", "(", ")" ]
55.875
0.009901
def relop_code(self, relop, operands_type): """Returns code for relational operator relop - relational operator operands_type - int or unsigned """ code = self.RELATIONAL_DICT[relop] offset = 0 if operands_type == SharedData.TYPES.INT else len(SharedData.RELATIONAL_OPERATORS) return code + offset
[ "def", "relop_code", "(", "self", ",", "relop", ",", "operands_type", ")", ":", "code", "=", "self", ".", "RELATIONAL_DICT", "[", "relop", "]", "offset", "=", "0", "if", "operands_type", "==", "SharedData", ".", "TYPES", ".", "INT", "else", "len", "(", "SharedData", ".", "RELATIONAL_OPERATORS", ")", "return", "code", "+", "offset" ]
44.875
0.008197
def copyNodeList(self, node): """Do a recursive copy of the node list. """ if node is None: node__o = None else: node__o = node._o ret = libxml2mod.xmlDocCopyNodeList(self._o, node__o) if ret is None:raise treeError('xmlDocCopyNodeList() failed') __tmp = xmlNode(_obj=ret) return __tmp
[ "def", "copyNodeList", "(", "self", ",", "node", ")", ":", "if", "node", "is", "None", ":", "node__o", "=", "None", "else", ":", "node__o", "=", "node", ".", "_o", "ret", "=", "libxml2mod", ".", "xmlDocCopyNodeList", "(", "self", ".", "_o", ",", "node__o", ")", "if", "ret", "is", "None", ":", "raise", "treeError", "(", "'xmlDocCopyNodeList() failed'", ")", "__tmp", "=", "xmlNode", "(", "_obj", "=", "ret", ")", "return", "__tmp" ]
41.75
0.017595
def make_parser(parser_creator=None, **kwargs): """Returns a base argument parser for the ray.tune tool. Args: parser_creator: A constructor for the parser class. kwargs: Non-positional args to be passed into the parser class constructor. """ if parser_creator: parser = parser_creator(**kwargs) else: parser = argparse.ArgumentParser(**kwargs) # Note: keep this in sync with rllib/train.py parser.add_argument( "--run", default=None, type=str, help="The algorithm or model to train. This may refer to the name " "of a built-on algorithm (e.g. RLLib's DQN or PPO), or a " "user-defined trainable function or class registered in the " "tune registry.") parser.add_argument( "--stop", default="{}", type=json.loads, help="The stopping criteria, specified in JSON. The keys may be any " "field returned by 'train()' e.g. " "'{\"time_total_s\": 600, \"training_iteration\": 100000}' to stop " "after 600 seconds or 100k iterations, whichever is reached first.") parser.add_argument( "--config", default="{}", type=json.loads, help="Algorithm-specific configuration (e.g. env, hyperparams), " "specified in JSON.") parser.add_argument( "--resources-per-trial", default=None, type=json_to_resources, help="Override the machine resources to allocate per trial, e.g. " "'{\"cpu\": 64, \"gpu\": 8}'. Note that GPUs will not be assigned " "unless you specify them here. For RLlib, you probably want to " "leave this alone and use RLlib configs to control parallelism.") parser.add_argument( "--num-samples", default=1, type=int, help="Number of times to repeat each trial.") parser.add_argument( "--local-dir", default=DEFAULT_RESULTS_DIR, type=str, help="Local dir to save training results to. Defaults to '{}'.".format( DEFAULT_RESULTS_DIR)) parser.add_argument( "--upload-dir", default="", type=str, help="Optional URI to sync training results to (e.g. s3://bucket).") parser.add_argument( "--trial-name-creator", default=None, help="Optional creator function for the trial string, used in " "generating a trial directory.") parser.add_argument( "--sync-function", default=None, help="Function for syncing the local_dir to upload_dir. If string, " "then it must be a string template for syncer to run and needs to " "include replacement fields '{local_dir}' and '{remote_dir}'.") parser.add_argument( "--loggers", default=None, help="List of logger creators to be used with each Trial. " "Defaults to ray.tune.logger.DEFAULT_LOGGERS.") parser.add_argument( "--checkpoint-freq", default=0, type=int, help="How many training iterations between checkpoints. " "A value of 0 (default) disables checkpointing.") parser.add_argument( "--checkpoint-at-end", action="store_true", help="Whether to checkpoint at the end of the experiment. " "Default is False.") parser.add_argument( "--keep-checkpoints-num", default=None, type=int, help="Number of last checkpoints to keep. Others get " "deleted. Default (None) keeps all checkpoints.") parser.add_argument( "--checkpoint-score-attr", default="training_iteration", type=str, help="Specifies by which attribute to rank the best checkpoint. " "Default is increasing order. If attribute starts with min- it " "will rank attribute in decreasing order. Example: " "min-validation_loss") parser.add_argument( "--export-formats", default=None, help="List of formats that exported at the end of the experiment. " "Default is None. For RLlib, 'checkpoint' and 'model' are " "supported for TensorFlow policy graphs.") parser.add_argument( "--max-failures", default=3, type=int, help="Try to recover a trial from its last checkpoint at least this " "many times. Only applies if checkpointing is enabled.") parser.add_argument( "--scheduler", default="FIFO", type=str, help="FIFO (default), MedianStopping, AsyncHyperBand, " "HyperBand, or HyperOpt.") parser.add_argument( "--scheduler-config", default="{}", type=json.loads, help="Config options to pass to the scheduler.") # Note: this currently only makes sense when running a single trial parser.add_argument( "--restore", default=None, type=str, help="If specified, restore from this checkpoint.") return parser
[ "def", "make_parser", "(", "parser_creator", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "parser_creator", ":", "parser", "=", "parser_creator", "(", "*", "*", "kwargs", ")", "else", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "*", "*", "kwargs", ")", "# Note: keep this in sync with rllib/train.py", "parser", ".", "add_argument", "(", "\"--run\"", ",", "default", "=", "None", ",", "type", "=", "str", ",", "help", "=", "\"The algorithm or model to train. This may refer to the name \"", "\"of a built-on algorithm (e.g. RLLib's DQN or PPO), or a \"", "\"user-defined trainable function or class registered in the \"", "\"tune registry.\"", ")", "parser", ".", "add_argument", "(", "\"--stop\"", ",", "default", "=", "\"{}\"", ",", "type", "=", "json", ".", "loads", ",", "help", "=", "\"The stopping criteria, specified in JSON. The keys may be any \"", "\"field returned by 'train()' e.g. \"", "\"'{\\\"time_total_s\\\": 600, \\\"training_iteration\\\": 100000}' to stop \"", "\"after 600 seconds or 100k iterations, whichever is reached first.\"", ")", "parser", ".", "add_argument", "(", "\"--config\"", ",", "default", "=", "\"{}\"", ",", "type", "=", "json", ".", "loads", ",", "help", "=", "\"Algorithm-specific configuration (e.g. env, hyperparams), \"", "\"specified in JSON.\"", ")", "parser", ".", "add_argument", "(", "\"--resources-per-trial\"", ",", "default", "=", "None", ",", "type", "=", "json_to_resources", ",", "help", "=", "\"Override the machine resources to allocate per trial, e.g. \"", "\"'{\\\"cpu\\\": 64, \\\"gpu\\\": 8}'. Note that GPUs will not be assigned \"", "\"unless you specify them here. For RLlib, you probably want to \"", "\"leave this alone and use RLlib configs to control parallelism.\"", ")", "parser", ".", "add_argument", "(", "\"--num-samples\"", ",", "default", "=", "1", ",", "type", "=", "int", ",", "help", "=", "\"Number of times to repeat each trial.\"", ")", "parser", ".", "add_argument", "(", "\"--local-dir\"", ",", "default", "=", "DEFAULT_RESULTS_DIR", ",", "type", "=", "str", ",", "help", "=", "\"Local dir to save training results to. Defaults to '{}'.\"", ".", "format", "(", "DEFAULT_RESULTS_DIR", ")", ")", "parser", ".", "add_argument", "(", "\"--upload-dir\"", ",", "default", "=", "\"\"", ",", "type", "=", "str", ",", "help", "=", "\"Optional URI to sync training results to (e.g. s3://bucket).\"", ")", "parser", ".", "add_argument", "(", "\"--trial-name-creator\"", ",", "default", "=", "None", ",", "help", "=", "\"Optional creator function for the trial string, used in \"", "\"generating a trial directory.\"", ")", "parser", ".", "add_argument", "(", "\"--sync-function\"", ",", "default", "=", "None", ",", "help", "=", "\"Function for syncing the local_dir to upload_dir. If string, \"", "\"then it must be a string template for syncer to run and needs to \"", "\"include replacement fields '{local_dir}' and '{remote_dir}'.\"", ")", "parser", ".", "add_argument", "(", "\"--loggers\"", ",", "default", "=", "None", ",", "help", "=", "\"List of logger creators to be used with each Trial. \"", "\"Defaults to ray.tune.logger.DEFAULT_LOGGERS.\"", ")", "parser", ".", "add_argument", "(", "\"--checkpoint-freq\"", ",", "default", "=", "0", ",", "type", "=", "int", ",", "help", "=", "\"How many training iterations between checkpoints. \"", "\"A value of 0 (default) disables checkpointing.\"", ")", "parser", ".", "add_argument", "(", "\"--checkpoint-at-end\"", ",", "action", "=", "\"store_true\"", ",", "help", "=", "\"Whether to checkpoint at the end of the experiment. \"", "\"Default is False.\"", ")", "parser", ".", "add_argument", "(", "\"--keep-checkpoints-num\"", ",", "default", "=", "None", ",", "type", "=", "int", ",", "help", "=", "\"Number of last checkpoints to keep. Others get \"", "\"deleted. Default (None) keeps all checkpoints.\"", ")", "parser", ".", "add_argument", "(", "\"--checkpoint-score-attr\"", ",", "default", "=", "\"training_iteration\"", ",", "type", "=", "str", ",", "help", "=", "\"Specifies by which attribute to rank the best checkpoint. \"", "\"Default is increasing order. If attribute starts with min- it \"", "\"will rank attribute in decreasing order. Example: \"", "\"min-validation_loss\"", ")", "parser", ".", "add_argument", "(", "\"--export-formats\"", ",", "default", "=", "None", ",", "help", "=", "\"List of formats that exported at the end of the experiment. \"", "\"Default is None. For RLlib, 'checkpoint' and 'model' are \"", "\"supported for TensorFlow policy graphs.\"", ")", "parser", ".", "add_argument", "(", "\"--max-failures\"", ",", "default", "=", "3", ",", "type", "=", "int", ",", "help", "=", "\"Try to recover a trial from its last checkpoint at least this \"", "\"many times. Only applies if checkpointing is enabled.\"", ")", "parser", ".", "add_argument", "(", "\"--scheduler\"", ",", "default", "=", "\"FIFO\"", ",", "type", "=", "str", ",", "help", "=", "\"FIFO (default), MedianStopping, AsyncHyperBand, \"", "\"HyperBand, or HyperOpt.\"", ")", "parser", ".", "add_argument", "(", "\"--scheduler-config\"", ",", "default", "=", "\"{}\"", ",", "type", "=", "json", ".", "loads", ",", "help", "=", "\"Config options to pass to the scheduler.\"", ")", "# Note: this currently only makes sense when running a single trial", "parser", ".", "add_argument", "(", "\"--restore\"", ",", "default", "=", "None", ",", "type", "=", "str", ",", "help", "=", "\"If specified, restore from this checkpoint.\"", ")", "return", "parser" ]
36.455224
0.000199
def export_epoch_file(stimfunction, filename, tr_duration, temporal_resolution=100.0 ): """ Output an epoch file, necessary for some inputs into brainiak This takes in the time course of stimulus events and outputs the epoch file used in Brainiak. The epoch file is a way to structure the timing information in fMRI that allows you to flexibly input different stimulus sequences. This is a list with each entry a 3d matrix corresponding to a participant. The dimensions of the 3d matrix are condition by epoch by time. For the i-th condition, if its k-th epoch spans time points t_m to t_n-1, then [i, k, t_m:t_n] are 1 in the epoch file. Parameters ---------- stimfunction : list of timepoint by condition arrays The stimulus function describing the time course of events. Each list entry is from a different participant, each row is a different timepoint (with the given temporal precision), each column is a different condition. export_epoch_file is looking for differences in the value of stimfunction to identify the start and end of an epoch. If epochs in stimfunction are coded with the same weight and there is no time between blocks then export_epoch_file won't be able to label them as different epochs filename : str The name of the epoch file to be output tr_duration : float How long is each TR in seconds temporal_resolution : float How many elements per second are you modeling with the stimfunction? """ # Cycle through the participants, different entries in the list epoch_file = [0] * len(stimfunction) for ppt_counter in range(len(stimfunction)): # What is the time course for the participant (binarized) stimfunction_ppt = np.abs(stimfunction[ppt_counter]) > 0 # Down sample the stim function stride = tr_duration * temporal_resolution stimfunction_downsampled = stimfunction_ppt[::int(stride), :] # Calculates the number of event onsets. This uses changes in value # to reflect different epochs. This might be false in some cases (the # weight is non-uniform over an epoch or there is no break between # identically weighted epochs). epochs = 0 # Preset conditions = stimfunction_ppt.shape[1] for condition_counter in range(conditions): weight_change = (np.diff(stimfunction_downsampled[:, condition_counter], 1, 0) != 0) # If the first or last events are 'on' then make these # represent a epoch change if stimfunction_downsampled[0, condition_counter] == 1: weight_change[0] = True if stimfunction_downsampled[-1, condition_counter] == 1: weight_change[-1] = True epochs += int(np.max(np.sum(weight_change, 0)) / 2) # Get other information trs = stimfunction_downsampled.shape[0] # Make a timing file for this participant epoch_file[ppt_counter] = np.zeros((conditions, epochs, trs)) # Cycle through conditions epoch_counter = 0 # Reset and count across conditions tr_counter = 0 while tr_counter < stimfunction_downsampled.shape[0]: for condition_counter in range(conditions): # Is it an event? if tr_counter < stimfunction_downsampled.shape[0] and \ stimfunction_downsampled[ tr_counter, condition_counter] == 1: # Add a one for this TR epoch_file[ppt_counter][condition_counter, epoch_counter, tr_counter] = 1 # Find the next non event value end_idx = np.where(stimfunction_downsampled[tr_counter:, condition_counter] == 0)[ 0][0] tr_idxs = list(range(tr_counter, tr_counter + end_idx)) # Add ones to all the trs within this event time frame epoch_file[ppt_counter][condition_counter, epoch_counter, tr_idxs] = 1 # Start from this index tr_counter += end_idx # Increment epoch_counter += 1 # Increment the counter tr_counter += 1 # Convert to boolean epoch_file[ppt_counter] = epoch_file[ppt_counter].astype('bool') # Save the file np.save(filename, epoch_file)
[ "def", "export_epoch_file", "(", "stimfunction", ",", "filename", ",", "tr_duration", ",", "temporal_resolution", "=", "100.0", ")", ":", "# Cycle through the participants, different entries in the list", "epoch_file", "=", "[", "0", "]", "*", "len", "(", "stimfunction", ")", "for", "ppt_counter", "in", "range", "(", "len", "(", "stimfunction", ")", ")", ":", "# What is the time course for the participant (binarized)", "stimfunction_ppt", "=", "np", ".", "abs", "(", "stimfunction", "[", "ppt_counter", "]", ")", ">", "0", "# Down sample the stim function", "stride", "=", "tr_duration", "*", "temporal_resolution", "stimfunction_downsampled", "=", "stimfunction_ppt", "[", ":", ":", "int", "(", "stride", ")", ",", ":", "]", "# Calculates the number of event onsets. This uses changes in value", "# to reflect different epochs. This might be false in some cases (the", "# weight is non-uniform over an epoch or there is no break between", "# identically weighted epochs).", "epochs", "=", "0", "# Preset", "conditions", "=", "stimfunction_ppt", ".", "shape", "[", "1", "]", "for", "condition_counter", "in", "range", "(", "conditions", ")", ":", "weight_change", "=", "(", "np", ".", "diff", "(", "stimfunction_downsampled", "[", ":", ",", "condition_counter", "]", ",", "1", ",", "0", ")", "!=", "0", ")", "# If the first or last events are 'on' then make these", "# represent a epoch change", "if", "stimfunction_downsampled", "[", "0", ",", "condition_counter", "]", "==", "1", ":", "weight_change", "[", "0", "]", "=", "True", "if", "stimfunction_downsampled", "[", "-", "1", ",", "condition_counter", "]", "==", "1", ":", "weight_change", "[", "-", "1", "]", "=", "True", "epochs", "+=", "int", "(", "np", ".", "max", "(", "np", ".", "sum", "(", "weight_change", ",", "0", ")", ")", "/", "2", ")", "# Get other information", "trs", "=", "stimfunction_downsampled", ".", "shape", "[", "0", "]", "# Make a timing file for this participant", "epoch_file", "[", "ppt_counter", "]", "=", "np", ".", "zeros", "(", "(", "conditions", ",", "epochs", ",", "trs", ")", ")", "# Cycle through conditions", "epoch_counter", "=", "0", "# Reset and count across conditions", "tr_counter", "=", "0", "while", "tr_counter", "<", "stimfunction_downsampled", ".", "shape", "[", "0", "]", ":", "for", "condition_counter", "in", "range", "(", "conditions", ")", ":", "# Is it an event?", "if", "tr_counter", "<", "stimfunction_downsampled", ".", "shape", "[", "0", "]", "and", "stimfunction_downsampled", "[", "tr_counter", ",", "condition_counter", "]", "==", "1", ":", "# Add a one for this TR", "epoch_file", "[", "ppt_counter", "]", "[", "condition_counter", ",", "epoch_counter", ",", "tr_counter", "]", "=", "1", "# Find the next non event value", "end_idx", "=", "np", ".", "where", "(", "stimfunction_downsampled", "[", "tr_counter", ":", ",", "condition_counter", "]", "==", "0", ")", "[", "0", "]", "[", "0", "]", "tr_idxs", "=", "list", "(", "range", "(", "tr_counter", ",", "tr_counter", "+", "end_idx", ")", ")", "# Add ones to all the trs within this event time frame", "epoch_file", "[", "ppt_counter", "]", "[", "condition_counter", ",", "epoch_counter", ",", "tr_idxs", "]", "=", "1", "# Start from this index", "tr_counter", "+=", "end_idx", "# Increment", "epoch_counter", "+=", "1", "# Increment the counter", "tr_counter", "+=", "1", "# Convert to boolean", "epoch_file", "[", "ppt_counter", "]", "=", "epoch_file", "[", "ppt_counter", "]", ".", "astype", "(", "'bool'", ")", "# Save the file", "np", ".", "save", "(", "filename", ",", "epoch_file", ")" ]
40.482759
0.000208
def _catalog_check(self, cat_name, append=False): """ Check to see if the name of the ingested catalog is valid Parameters ---------- cat_name: str The name of the catalog in the Catalog object append: bool Append the catalog rather than replace Returns ------- bool True if good catalog name else False """ good = True # Make sure the attribute name is good if cat_name[0].isdigit(): print("No names beginning with numbers please!") good = False # Make sure catalog is unique if not append and cat_name in self.catalogs: print("Catalog {} already ingested. Set 'append=True' to add more records.".format(cat_name)) good = False return good
[ "def", "_catalog_check", "(", "self", ",", "cat_name", ",", "append", "=", "False", ")", ":", "good", "=", "True", "# Make sure the attribute name is good", "if", "cat_name", "[", "0", "]", ".", "isdigit", "(", ")", ":", "print", "(", "\"No names beginning with numbers please!\"", ")", "good", "=", "False", "# Make sure catalog is unique", "if", "not", "append", "and", "cat_name", "in", "self", ".", "catalogs", ":", "print", "(", "\"Catalog {} already ingested. Set 'append=True' to add more records.\"", ".", "format", "(", "cat_name", ")", ")", "good", "=", "False", "return", "good" ]
30.103448
0.008879
def delete_tags(tags, name=None, group_id=None, vpc_name=None, vpc_id=None, region=None, key=None, keyid=None, profile=None): ''' deletes tags from a security group .. versionadded:: 2016.3.0 tags a list of tags to remove name the name of the security group group_id the group id of the security group (in lie of a name/vpc combo) vpc_name the name of the vpc to search the named group for vpc_id the id of the vpc, in lieu of the vpc_name region the amazon region key amazon key keyid amazon keyid profile amazon profile CLI example: .. code-block:: bash salt myminion boto_secgroup.delete_tags ['TAG_TO_DELETE1','TAG_TO_DELETE2'] security_group_name vpc_id=vpc-13435 profile=my_aws_profile ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) secgrp = _get_group(conn, name=name, vpc_id=vpc_id, vpc_name=vpc_name, group_id=group_id, region=region, key=key, keyid=keyid, profile=profile) if secgrp: if isinstance(tags, list): tags_to_remove = {} for tag in tags: tags_to_remove[tag] = None secgrp.remove_tags(tags_to_remove) else: msg = 'Tags must be a list of tagnames to remove from the security group' raise SaltInvocationError(msg) else: msg = 'The security group could not be found' raise SaltInvocationError(msg) return True
[ "def", "delete_tags", "(", "tags", ",", "name", "=", "None", ",", "group_id", "=", "None", ",", "vpc_name", "=", "None", ",", "vpc_id", "=", "None", ",", "region", "=", "None", ",", "key", "=", "None", ",", "keyid", "=", "None", ",", "profile", "=", "None", ")", ":", "conn", "=", "_get_conn", "(", "region", "=", "region", ",", "key", "=", "key", ",", "keyid", "=", "keyid", ",", "profile", "=", "profile", ")", "secgrp", "=", "_get_group", "(", "conn", ",", "name", "=", "name", ",", "vpc_id", "=", "vpc_id", ",", "vpc_name", "=", "vpc_name", ",", "group_id", "=", "group_id", ",", "region", "=", "region", ",", "key", "=", "key", ",", "keyid", "=", "keyid", ",", "profile", "=", "profile", ")", "if", "secgrp", ":", "if", "isinstance", "(", "tags", ",", "list", ")", ":", "tags_to_remove", "=", "{", "}", "for", "tag", "in", "tags", ":", "tags_to_remove", "[", "tag", "]", "=", "None", "secgrp", ".", "remove_tags", "(", "tags_to_remove", ")", "else", ":", "msg", "=", "'Tags must be a list of tagnames to remove from the security group'", "raise", "SaltInvocationError", "(", "msg", ")", "else", ":", "msg", "=", "'The security group could not be found'", "raise", "SaltInvocationError", "(", "msg", ")", "return", "True" ]
25.734375
0.001754
def _index_sub(self, uri_list, num, batch_num): """ Converts a list of uris to elasticsearch json objects args: uri_list: list of uris to convert num: the ending count within the batch batch_num: the batch number """ bname = '%s-%s' % (batch_num, num) log.debug("batch_num '%s' starting es_json conversion", bname) qry_data = get_all_item_data([item[0] for item in uri_list], self.tstore_conn, rdfclass=self.rdf_class) log.debug("batch_num '%s-%s' query_complete | count: %s", batch_num, num, len(qry_data)) # path = os.path.join(CFG.dirs.cache, "index_pre") # if not os.path.exists(path): # os.makedirs(path) # with open(os.path.join(path, bname + ".json"), "w") as fo: # fo.write(json.dumps(qry_data)) data = RdfDataset(qry_data) del qry_data log.debug("batch_num '%s-%s' RdfDataset Loaded", batch_num, num) for value in uri_list: try: self.batch_data[batch_num]['main'].append(\ data[value[0]].es_json()) self.count += 1 except KeyError: pass for name, indexer in self.other_indexers.items(): for item in data.json_qry("$.:%s" % name.pyuri): val = item.es_json() if val: self.batch_data[batch_num][name].append(val) self.batch_uris[batch_num].append(item.subject) del data del uri_list log.debug("batch_num '%s-%s' converted to es_json", batch_num, num)
[ "def", "_index_sub", "(", "self", ",", "uri_list", ",", "num", ",", "batch_num", ")", ":", "bname", "=", "'%s-%s'", "%", "(", "batch_num", ",", "num", ")", "log", ".", "debug", "(", "\"batch_num '%s' starting es_json conversion\"", ",", "bname", ")", "qry_data", "=", "get_all_item_data", "(", "[", "item", "[", "0", "]", "for", "item", "in", "uri_list", "]", ",", "self", ".", "tstore_conn", ",", "rdfclass", "=", "self", ".", "rdf_class", ")", "log", ".", "debug", "(", "\"batch_num '%s-%s' query_complete | count: %s\"", ",", "batch_num", ",", "num", ",", "len", "(", "qry_data", ")", ")", "# path = os.path.join(CFG.dirs.cache, \"index_pre\")", "# if not os.path.exists(path):", "# os.makedirs(path)", "# with open(os.path.join(path, bname + \".json\"), \"w\") as fo:", "# fo.write(json.dumps(qry_data))", "data", "=", "RdfDataset", "(", "qry_data", ")", "del", "qry_data", "log", ".", "debug", "(", "\"batch_num '%s-%s' RdfDataset Loaded\"", ",", "batch_num", ",", "num", ")", "for", "value", "in", "uri_list", ":", "try", ":", "self", ".", "batch_data", "[", "batch_num", "]", "[", "'main'", "]", ".", "append", "(", "data", "[", "value", "[", "0", "]", "]", ".", "es_json", "(", ")", ")", "self", ".", "count", "+=", "1", "except", "KeyError", ":", "pass", "for", "name", ",", "indexer", "in", "self", ".", "other_indexers", ".", "items", "(", ")", ":", "for", "item", "in", "data", ".", "json_qry", "(", "\"$.:%s\"", "%", "name", ".", "pyuri", ")", ":", "val", "=", "item", ".", "es_json", "(", ")", "if", "val", ":", "self", ".", "batch_data", "[", "batch_num", "]", "[", "name", "]", ".", "append", "(", "val", ")", "self", ".", "batch_uris", "[", "batch_num", "]", ".", "append", "(", "item", ".", "subject", ")", "del", "data", "del", "uri_list", "log", ".", "debug", "(", "\"batch_num '%s-%s' converted to es_json\"", ",", "batch_num", ",", "num", ")" ]
39.840909
0.00167
def create_namespaced_ingress(self, namespace, body, **kwargs): # noqa: E501 """create_namespaced_ingress # noqa: E501 create an Ingress # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_namespaced_ingress(namespace, body, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param V1beta1Ingress body: (required) :param bool include_uninitialized: If true, partially initialized resources are included in the response. :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :return: V1beta1Ingress If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.create_namespaced_ingress_with_http_info(namespace, body, **kwargs) # noqa: E501 else: (data) = self.create_namespaced_ingress_with_http_info(namespace, body, **kwargs) # noqa: E501 return data
[ "def", "create_namespaced_ingress", "(", "self", ",", "namespace", ",", "body", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async_req'", ")", ":", "return", "self", ".", "create_namespaced_ingress_with_http_info", "(", "namespace", ",", "body", ",", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "create_namespaced_ingress_with_http_info", "(", "namespace", ",", "body", ",", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
61
0.001291
def startDrag(self, dragData): """ Starts a new drag with the inputed data. :param dragData | <dict> """ # create the mime data mimeData = QMimeData() for key, value in dragData.items(): mimeData.setData('application/x-%s' % key, wrapVariant(value)) # create the drag instance drag = QDrag(self.scene().chart()) drag.setMimeData(mimeData) drag.exec_()
[ "def", "startDrag", "(", "self", ",", "dragData", ")", ":", "# create the mime data\r", "mimeData", "=", "QMimeData", "(", ")", "for", "key", ",", "value", "in", "dragData", ".", "items", "(", ")", ":", "mimeData", ".", "setData", "(", "'application/x-%s'", "%", "key", ",", "wrapVariant", "(", "value", ")", ")", "# create the drag instance\r", "drag", "=", "QDrag", "(", "self", ".", "scene", "(", ")", ".", "chart", "(", ")", ")", "drag", ".", "setMimeData", "(", "mimeData", ")", "drag", ".", "exec_", "(", ")" ]
31.6
0.008197
def in_attack_range_of(self, unit: Unit, bonus_distance: Union[int, float] = 0) -> "Units": """ Filters units that are in attack range of the unit in parameter """ return self.filter(lambda x: unit.target_in_range(x, bonus_distance=bonus_distance))
[ "def", "in_attack_range_of", "(", "self", ",", "unit", ":", "Unit", ",", "bonus_distance", ":", "Union", "[", "int", ",", "float", "]", "=", "0", ")", "->", "\"Units\"", ":", "return", "self", ".", "filter", "(", "lambda", "x", ":", "unit", ".", "target_in_range", "(", "x", ",", "bonus_distance", "=", "bonus_distance", ")", ")" ]
87.333333
0.015152
def get_model_from_path_string(root_model, path): """ Return a model class for a related model root_model is the class of the initial model path is like foo__bar where bar is related to foo """ for path_section in path.split('__'): if path_section: try: field, model, direct, m2m = _get_field_by_name(root_model, path_section) except FieldDoesNotExist: return root_model if direct: if _get_remote_field(field): try: root_model = _get_remote_field(field).parent_model() except AttributeError: root_model = _get_remote_field(field).model else: if hasattr(field, 'related_model'): root_model = field.related_model else: root_model = field.model return root_model
[ "def", "get_model_from_path_string", "(", "root_model", ",", "path", ")", ":", "for", "path_section", "in", "path", ".", "split", "(", "'__'", ")", ":", "if", "path_section", ":", "try", ":", "field", ",", "model", ",", "direct", ",", "m2m", "=", "_get_field_by_name", "(", "root_model", ",", "path_section", ")", "except", "FieldDoesNotExist", ":", "return", "root_model", "if", "direct", ":", "if", "_get_remote_field", "(", "field", ")", ":", "try", ":", "root_model", "=", "_get_remote_field", "(", "field", ")", ".", "parent_model", "(", ")", "except", "AttributeError", ":", "root_model", "=", "_get_remote_field", "(", "field", ")", ".", "model", "else", ":", "if", "hasattr", "(", "field", ",", "'related_model'", ")", ":", "root_model", "=", "field", ".", "related_model", "else", ":", "root_model", "=", "field", ".", "model", "return", "root_model" ]
40.217391
0.002112
def rjust_text(text, width=80, indent=0, subsequent=None): """Wrap text and adjust it to right border. Same as L{wrap_text} with the difference that the text is aligned against the right text border. Args: text (str): Text to wrap and align. width (int): Maximum number of characters per line. indent (int): Indentation of the first line. subsequent (int or None): Indentation of all other lines, if it is ``None``, then the indentation will be same as for the first line. """ text = re.sub(r"\s+", " ", text).strip() if subsequent is None: subsequent = indent wrapper = TextWrapper( width=width, break_long_words=False, replace_whitespace=True, initial_indent=" " * (indent + subsequent), subsequent_indent=" " * subsequent, ) return wrapper.fill(text)[subsequent:]
[ "def", "rjust_text", "(", "text", ",", "width", "=", "80", ",", "indent", "=", "0", ",", "subsequent", "=", "None", ")", ":", "text", "=", "re", ".", "sub", "(", "r\"\\s+\"", ",", "\" \"", ",", "text", ")", ".", "strip", "(", ")", "if", "subsequent", "is", "None", ":", "subsequent", "=", "indent", "wrapper", "=", "TextWrapper", "(", "width", "=", "width", ",", "break_long_words", "=", "False", ",", "replace_whitespace", "=", "True", ",", "initial_indent", "=", "\" \"", "*", "(", "indent", "+", "subsequent", ")", ",", "subsequent_indent", "=", "\" \"", "*", "subsequent", ",", ")", "return", "wrapper", ".", "fill", "(", "text", ")", "[", "subsequent", ":", "]" ]
37.5
0.001083
def get_exporter(obj, name): """ Get an exporter for the :param obj: object to export :type obj: :class:`Component <cqparts.Component>` :param name: registered name of exporter :type name: :class:`str` :return: an exporter instance of the given type :rtype: :class:`Exporter` :raises TypeError: if exporter cannot be found """ if name not in exporter_index: raise TypeError( ("exporter type '%s' is not registered: " % name) + ("registered types: %r" % sorted(exporter_index.keys())) ) for base_class in exporter_index[name]: if isinstance(obj, base_class): return exporter_index[name][base_class](obj) raise TypeError("exporter type '%s' for a %r is not registered" % ( name, type(obj) ))
[ "def", "get_exporter", "(", "obj", ",", "name", ")", ":", "if", "name", "not", "in", "exporter_index", ":", "raise", "TypeError", "(", "(", "\"exporter type '%s' is not registered: \"", "%", "name", ")", "+", "(", "\"registered types: %r\"", "%", "sorted", "(", "exporter_index", ".", "keys", "(", ")", ")", ")", ")", "for", "base_class", "in", "exporter_index", "[", "name", "]", ":", "if", "isinstance", "(", "obj", ",", "base_class", ")", ":", "return", "exporter_index", "[", "name", "]", "[", "base_class", "]", "(", "obj", ")", "raise", "TypeError", "(", "\"exporter type '%s' for a %r is not registered\"", "%", "(", "name", ",", "type", "(", "obj", ")", ")", ")" ]
31.68
0.001225
def validate(node, source): """Call this function to validate an AST.""" # TODO: leaving strict checking off to support insert_grad_of lf = LanguageFence(source, strict=False) lf.visit(node) return node
[ "def", "validate", "(", "node", ",", "source", ")", ":", "# TODO: leaving strict checking off to support insert_grad_of", "lf", "=", "LanguageFence", "(", "source", ",", "strict", "=", "False", ")", "lf", ".", "visit", "(", "node", ")", "return", "node" ]
34.5
0.028302
def cleanup_classes(rdf): """Remove unnecessary class definitions: definitions of SKOS classes or unused classes. If a class is also a skos:Concept or skos:Collection, remove the 'classness' of it but leave the Concept/Collection.""" for t in (OWL.Class, RDFS.Class): for cl in rdf.subjects(RDF.type, t): # SKOS classes may be safely removed if cl.startswith(SKOS): logging.debug("removing SKOS class definition: %s", cl) replace_subject(rdf, cl, None) continue # if there are instances of the class, keep the class def if rdf.value(None, RDF.type, cl, any=True) is not None: continue # if the class is used in a domain/range/equivalentClass # definition, keep the class def if rdf.value(None, RDFS.domain, cl, any=True) is not None: continue if rdf.value(None, RDFS.range, cl, any=True) is not None: continue if rdf.value(None, OWL.equivalentClass, cl, any=True) is not None: continue # if the class is also a skos:Concept or skos:Collection, only # remove its rdf:type if (cl, RDF.type, SKOS.Concept) in rdf \ or (cl, RDF.type, SKOS.Collection) in rdf: logging.debug("removing classiness of %s", cl) rdf.remove((cl, RDF.type, t)) else: # remove it completely logging.debug("removing unused class definition: %s", cl) replace_subject(rdf, cl, None)
[ "def", "cleanup_classes", "(", "rdf", ")", ":", "for", "t", "in", "(", "OWL", ".", "Class", ",", "RDFS", ".", "Class", ")", ":", "for", "cl", "in", "rdf", ".", "subjects", "(", "RDF", ".", "type", ",", "t", ")", ":", "# SKOS classes may be safely removed", "if", "cl", ".", "startswith", "(", "SKOS", ")", ":", "logging", ".", "debug", "(", "\"removing SKOS class definition: %s\"", ",", "cl", ")", "replace_subject", "(", "rdf", ",", "cl", ",", "None", ")", "continue", "# if there are instances of the class, keep the class def", "if", "rdf", ".", "value", "(", "None", ",", "RDF", ".", "type", ",", "cl", ",", "any", "=", "True", ")", "is", "not", "None", ":", "continue", "# if the class is used in a domain/range/equivalentClass", "# definition, keep the class def", "if", "rdf", ".", "value", "(", "None", ",", "RDFS", ".", "domain", ",", "cl", ",", "any", "=", "True", ")", "is", "not", "None", ":", "continue", "if", "rdf", ".", "value", "(", "None", ",", "RDFS", ".", "range", ",", "cl", ",", "any", "=", "True", ")", "is", "not", "None", ":", "continue", "if", "rdf", ".", "value", "(", "None", ",", "OWL", ".", "equivalentClass", ",", "cl", ",", "any", "=", "True", ")", "is", "not", "None", ":", "continue", "# if the class is also a skos:Concept or skos:Collection, only", "# remove its rdf:type", "if", "(", "cl", ",", "RDF", ".", "type", ",", "SKOS", ".", "Concept", ")", "in", "rdf", "or", "(", "cl", ",", "RDF", ".", "type", ",", "SKOS", ".", "Collection", ")", "in", "rdf", ":", "logging", ".", "debug", "(", "\"removing classiness of %s\"", ",", "cl", ")", "rdf", ".", "remove", "(", "(", "cl", ",", "RDF", ".", "type", ",", "t", ")", ")", "else", ":", "# remove it completely", "logging", ".", "debug", "(", "\"removing unused class definition: %s\"", ",", "cl", ")", "replace_subject", "(", "rdf", ",", "cl", ",", "None", ")" ]
49.90625
0.000614
def find_type(self, txt): """ top level function used to simply return the ONE ACTUAL string used for data types """ searchString = txt.upper() match = 'Unknown' for i in self.lst_type: if searchString in i: match = i return match
[ "def", "find_type", "(", "self", ",", "txt", ")", ":", "searchString", "=", "txt", ".", "upper", "(", ")", "match", "=", "'Unknown'", "for", "i", "in", "self", ".", "lst_type", ":", "if", "searchString", "in", "i", ":", "match", "=", "i", "return", "match" ]
28.454545
0.009288
def all_subs(bounds): """given a list of tuples specifying the bounds of an array, all_subs() returns a list of all the tuples of subscripts for that array.""" idx_list = [] for i in range(len(bounds)): this_dim = bounds[i] lo,hi = this_dim[0],this_dim[1] # bounds for this dimension this_dim_idxs = range(lo,hi+1) # indexes for this dimension idx_list.append(this_dim_idxs) return idx2subs(idx_list)
[ "def", "all_subs", "(", "bounds", ")", ":", "idx_list", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "bounds", ")", ")", ":", "this_dim", "=", "bounds", "[", "i", "]", "lo", ",", "hi", "=", "this_dim", "[", "0", "]", ",", "this_dim", "[", "1", "]", "# bounds for this dimension", "this_dim_idxs", "=", "range", "(", "lo", ",", "hi", "+", "1", ")", "# indexes for this dimension", "idx_list", ".", "append", "(", "this_dim_idxs", ")", "return", "idx2subs", "(", "idx_list", ")" ]
41
0.008677
def simEvalCond(simulator, *conds): """ Evaluate list of values as condition """ _cond = True _vld = True for v in conds: val = bool(v.val) fullVld = v.vldMask == 1 if fullVld: if not val: return False, True else: return False, False _cond = _cond and val _vld = _vld and fullVld return _cond, _vld
[ "def", "simEvalCond", "(", "simulator", ",", "*", "conds", ")", ":", "_cond", "=", "True", "_vld", "=", "True", "for", "v", "in", "conds", ":", "val", "=", "bool", "(", "v", ".", "val", ")", "fullVld", "=", "v", ".", "vldMask", "==", "1", "if", "fullVld", ":", "if", "not", "val", ":", "return", "False", ",", "True", "else", ":", "return", "False", ",", "False", "_cond", "=", "_cond", "and", "val", "_vld", "=", "_vld", "and", "fullVld", "return", "_cond", ",", "_vld" ]
20.947368
0.002404
def filter(self, datasource_type, datasource_id, column): """ Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return: """ # TODO: Cache endpoint by user, datasource and column datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) security_manager.assert_datasource_permission(datasource) payload = json.dumps( datasource.values_for_column( column, config.get('FILTER_SELECT_ROW_LIMIT', 10000), ), default=utils.json_int_dttm_ser) return json_success(payload)
[ "def", "filter", "(", "self", ",", "datasource_type", ",", "datasource_id", ",", "column", ")", ":", "# TODO: Cache endpoint by user, datasource and column", "datasource", "=", "ConnectorRegistry", ".", "get_datasource", "(", "datasource_type", ",", "datasource_id", ",", "db", ".", "session", ")", "if", "not", "datasource", ":", "return", "json_error_response", "(", "DATASOURCE_MISSING_ERR", ")", "security_manager", ".", "assert_datasource_permission", "(", "datasource", ")", "payload", "=", "json", ".", "dumps", "(", "datasource", ".", "values_for_column", "(", "column", ",", "config", ".", "get", "(", "'FILTER_SELECT_ROW_LIMIT'", ",", "10000", ")", ",", ")", ",", "default", "=", "utils", ".", "json_int_dttm_ser", ")", "return", "json_success", "(", "payload", ")" ]
40.181818
0.00221
def generate_and_run(simulation, simulator, network=None, return_results=False, base_dir=None, target_dir=None, num_processors=1): """ Generates the network in the specified simulator and runs, if appropriate """ if network == None: network = load_network_json(simulation.network) print_v("Generating network %s and running in simulator: %s..." % (network.id, simulator)) if simulator == 'NEURON': _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from neuromllite.NeuronHandler import NeuronHandler nrn_handler = NeuronHandler() for c in network.cells: if c.neuroml2_source_file: src_dir = os.path.dirname(os.path.abspath(c.neuroml2_source_file)) nrn_handler.executeHoc('load_file("%s/%s.hoc")' % (src_dir, c.id)) generate_network(network, nrn_handler, generate_network, base_dir) if return_results: raise NotImplementedError("Reloading results not supported in Neuron yet...") elif simulator.lower() == 'sonata': # Will not "run" obviously... from neuromllite.SonataHandler import SonataHandler sonata_handler = SonataHandler() generate_network(network, sonata_handler, always_include_props=True, base_dir=base_dir) print_v("Done with Sonata...") elif simulator.lower().startswith('graph'): # Will not "run" obviously... from neuromllite.GraphVizHandler import GraphVizHandler, engines try: if simulator[-1].isalpha(): print simulator print simulator[5:] print simulator[5:-1] engine = engines[simulator[-1]] level = int(simulator[5:-1]) else: engine = 'dot' level = int(simulator[5:]) except Exception as e: print e print_v("Error parsing: %s"%simulator) print_v("Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc.") return handler = GraphVizHandler(level, engine=engine, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with GraphViz...") elif simulator.lower().startswith('matrix'): # Will not "run" obviously... from neuromllite.MatrixHandler import MatrixHandler try: level = int(simulator[6:]) except: print_v("Error parsing: %s"%simulator) print_v("Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc.") return handler = MatrixHandler(level, nl_network=network) generate_network(network, handler, always_include_props=True, base_dir=base_dir) print_v("Done with MatrixHandler...") elif simulator.startswith('PyNN'): #_generate_neuron_files_from_neuroml(network) simulator_name = simulator.split('_')[1].lower() from neuromllite.PyNNHandler import PyNNHandler pynn_handler = PyNNHandler(simulator_name, simulation.dt, network.id) syn_cell_params = {} for proj in network.projections: synapse = network.get_child(proj.synapse, 'synapses') post_pop = network.get_child(proj.postsynaptic, 'populations') if not post_pop.component in syn_cell_params: syn_cell_params[post_pop.component] = {} for p in synapse.parameters: post = '' if synapse.pynn_receptor_type == "excitatory": post = '_E' elif synapse.pynn_receptor_type == "inhibitory": post = '_I' syn_cell_params[post_pop.component]['%s%s' % (p, post)] = synapse.parameters[p] cells = {} for c in network.cells: if c.pynn_cell: cell_params = {} if c.parameters: for p in c.parameters: cell_params[p] = evaluate(c.parameters[p], network.parameters) dont_set_here = ['tau_syn_E', 'e_rev_E', 'tau_syn_I', 'e_rev_I'] for d in dont_set_here: if d in c.parameters: raise Exception('Synaptic parameters like %s should be set '+ 'in individual synapses, not in the list of parameters associated with the cell' % d) if c.id in syn_cell_params: cell_params.update(syn_cell_params[c.id]) print_v("Creating cell with params: %s" % cell_params) exec('cells["%s"] = pynn_handler.sim.%s(**cell_params)' % (c.id, c.pynn_cell)) if c.pynn_cell != 'SpikeSourcePoisson': exec("cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value" % (c.id, c.id)) pynn_handler.set_cells(cells) receptor_types = {} for s in network.synapses: if s.pynn_receptor_type: receptor_types[s.id] = s.pynn_receptor_type pynn_handler.set_receptor_types(receptor_types) for input_source in network.input_sources: if input_source.pynn_input: pynn_handler.add_input_source(input_source) generate_network(network, pynn_handler, always_include_props=True, base_dir=base_dir) for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: if pop.can_record('v'): pop.record('v') pynn_handler.sim.run(simulation.duration) pynn_handler.sim.end() traces = {} events = {} if not 'NeuroML' in simulator: from neo.io import PyNNTextIO for pid in pynn_handler.populations: pop = pynn_handler.populations[pid] if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces: filename = "%s.%s.v.dat" % (simulation.id, pop.label) all_columns = [] print_v("Writing data for %s to %s" % (pop.label, filename)) for i in range(len(pop)): if pop.can_record('v'): ref = '%s[%i]'%(pop.label,i) traces[ref] = [] data = pop.get_data('v', gather=False) for segment in data.segments: vm = segment.analogsignals[0].transpose()[i] if len(all_columns) == 0: tt = np.array([t * simulation.dt / 1000. for t in range(len(vm))]) all_columns.append(tt) vm_si = [float(v / 1000.) for v in vm] traces[ref] = vm_si all_columns.append(vm_si) times_vm = np.array(all_columns).transpose() np.savetxt(filename, times_vm, delimiter='\t', fmt='%s') if return_results: _print_result_info(traces, events) return traces, events elif simulator == 'NetPyNE': if target_dir==None: target_dir='./' _generate_neuron_files_from_neuroml(network, dir_for_mod_files=target_dir) from netpyne import specs from netpyne import sim # Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates from netpyne.conversion.neuromlFormat import NetPyNEBuilder import pprint; pp = pprint.PrettyPrinter(depth=6) netParams = specs.NetParams() simConfig = specs.SimConfig() netpyne_handler = NetPyNEBuilder(netParams, simConfig=simConfig, verbose=True) generate_network(network, netpyne_handler, base_dir=base_dir) netpyne_handler.finalise() simConfig = specs.SimConfig() simConfig.tstop = simulation.duration simConfig.duration = simulation.duration simConfig.dt = simulation.dt simConfig.seed = simulation.seed simConfig.recordStep = simulation.dt simConfig.recordCells = ['all'] simConfig.recordTraces = {} for pop in netpyne_handler.popParams.values(): if 'all' in simulation.recordTraces or pop.id in simulation.recordTraces: for i in pop['cellsList']: id = pop['pop'] index = i['cellLabel'] simConfig.recordTraces['v_%s_%s' % (id, index)] = {'sec':'soma', 'loc':0.5, 'var':'v', 'conds':{'pop':id, 'cellLabel':index}} simConfig.saveDat = True print_v("NetPyNE netParams: ") pp.pprint(netParams.todict()) #print_v("NetPyNE simConfig: ") #pp.pprint(simConfig.todict()) sim.initialize(netParams, simConfig) # create network object and set cfg and net params sim.net.createPops() cells = sim.net.createCells() # instantiate network cells based on defined populations for proj_id in netpyne_handler.projection_infos.keys(): projName, prePop, postPop, synapse, ptype = netpyne_handler.projection_infos[proj_id] print_v("Creating connections for %s (%s): %s->%s via %s" % (projName, ptype, prePop, postPop, synapse)) preComp = netpyne_handler.pop_ids_vs_components[prePop] for conn in netpyne_handler.connections[projName]: pre_id, pre_seg, pre_fract, post_id, post_seg, post_fract, delay, weight = conn #connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold} connParam = {'delay':delay, 'weight':weight, 'synsPerConn':1, 'sec':post_seg, 'loc':post_fract} if ptype == 'electricalProjection': if weight != 1: raise Exception('Cannot yet support inputs where weight !=1!') connParam = {'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract, 'gapJunction': True, 'weight': weight} else: connParam = {'delay': delay, 'weight': weight, 'synsPerConn': 1, 'sec': post_seg, 'loc': post_fract} #'threshold': threshold} connParam['synMech'] = synapse if post_id in sim.net.gid2lid: # check if postsyn is in this node's list of gids sim.net._addCellConn(connParam, pre_id, post_id) stims = sim.net.addStims() # add external stimulation to cells (IClamps etc) simData = sim.setupRecording() # setup variables to record for each cell (spikes, V traces, etc) sim.runSim() # run parallel Neuron simulation sim.gatherData() # gather spiking data and cell info from each node sim.saveData() # save params, cell info and sim output to file (pickle,mat,txt,etc) if return_results: raise NotImplementedError("Reloading results not supported in NetPyNE yet...") elif simulator == 'jNeuroML' or simulator == 'jNeuroML_NEURON' or simulator == 'jNeuroML_NetPyNE': from pyneuroml.lems import generate_lems_file_for_neuroml from pyneuroml import pynml lems_file_name = 'LEMS_%s.xml' % simulation.id nml_file_name, nml_doc = generate_neuroml2_from_network(network, base_dir=base_dir, target_dir=target_dir) included_files = ['PyNN.xml'] for c in network.cells: if c.lems_source_file: included_files.append(c.lems_source_file) ''' if network.cells: for c in network.cells: included_files.append(c.neuroml2_source_file) ''' if network.synapses: for s in network.synapses: if s.lems_source_file: included_files.append(s.lems_source_file) print_v("Generating LEMS file prior to running in %s" % simulator) pops_plot_save = [] pops_spike_save = [] gen_plots_for_quantities = {} gen_saves_for_quantities = {} for p in network.populations: if simulation.recordTraces and ('all' in simulation.recordTraces or p.id in simulation.recordTraces): pops_plot_save.append(p.id) if simulation.recordSpikes and ('all' in simulation.recordSpikes or p.id in simulation.recordSpikes): pops_spike_save.append(p.id) if simulation.recordRates and ('all' in simulation.recordRates or p.id in simulation.recordRates): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/r' % (p.id, i, p.component) gen_plots_for_quantities['%s_%i_r' % (p.id, i)] = [quantity] gen_saves_for_quantities['%s_%i.r.dat' % (p.id, i)] = [quantity] if simulation.recordVariables: for var in simulation.recordVariables: to_rec = simulation.recordVariables[var] if ('all' in to_rec or p.id in to_rec): size = evaluate(p.size, network.parameters) for i in range(size): quantity = '%s/%i/%s/%s' % (p.id, i, p.component,var) gen_plots_for_quantities['%s_%i_%s' % (p.id, i, var)] = [quantity] gen_saves_for_quantities['%s_%i.%s.dat' % (p.id, i, var)] = [quantity] generate_lems_file_for_neuroml(simulation.id, nml_file_name, network.id, simulation.duration, simulation.dt, lems_file_name, target_dir=target_dir if target_dir else '.', nml_doc=nml_doc, # Use this if the nml doc has already been loaded (to avoid delay in reload) include_extra_files=included_files, gen_plots_for_all_v=False, plot_all_segments=False, gen_plots_for_quantities=gen_plots_for_quantities, # Dict with displays vs lists of quantity paths gen_plots_for_only_populations=pops_plot_save, # List of populations, all pops if = [] gen_saves_for_all_v=False, save_all_segments=False, gen_saves_for_only_populations=pops_plot_save, # List of populations, all pops if = [] gen_saves_for_quantities=gen_saves_for_quantities, # Dict with file names vs lists of quantity paths gen_spike_saves_for_all_somas=False, gen_spike_saves_for_only_populations=pops_spike_save, # List of populations, all pops if = [] gen_spike_saves_for_cells={}, # Dict with file names vs lists of quantity paths spike_time_format='ID_TIME', copy_neuroml=True, lems_file_generate_seed=12345, report_file_name='report.%s.txt' % simulation.id, simulation_seed=simulation.seed if simulation.seed else 12345, verbose=True) lems_file_name = _locate_file(lems_file_name, target_dir) if simulator == 'jNeuroML': results = pynml.run_lems_with_jneuroml(lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NEURON': results = pynml.run_lems_with_jneuroml_neuron(lems_file_name, nogui=True, load_saved_data=return_results, reload_events=return_results) elif simulator == 'jNeuroML_NetPyNE': results = pynml.run_lems_with_jneuroml_netpyne(lems_file_name, nogui=True, verbose=True, load_saved_data=return_results, reload_events=return_results, num_processors=num_processors) print_v("Finished running LEMS file %s in %s (returning results: %s)" % (lems_file_name, simulator, return_results)) if return_results: traces, events = results _print_result_info(traces, events) return results
[ "def", "generate_and_run", "(", "simulation", ",", "simulator", ",", "network", "=", "None", ",", "return_results", "=", "False", ",", "base_dir", "=", "None", ",", "target_dir", "=", "None", ",", "num_processors", "=", "1", ")", ":", "if", "network", "==", "None", ":", "network", "=", "load_network_json", "(", "simulation", ".", "network", ")", "print_v", "(", "\"Generating network %s and running in simulator: %s...\"", "%", "(", "network", ".", "id", ",", "simulator", ")", ")", "if", "simulator", "==", "'NEURON'", ":", "_generate_neuron_files_from_neuroml", "(", "network", ",", "dir_for_mod_files", "=", "target_dir", ")", "from", "neuromllite", ".", "NeuronHandler", "import", "NeuronHandler", "nrn_handler", "=", "NeuronHandler", "(", ")", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "neuroml2_source_file", ":", "src_dir", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "c", ".", "neuroml2_source_file", ")", ")", "nrn_handler", ".", "executeHoc", "(", "'load_file(\"%s/%s.hoc\")'", "%", "(", "src_dir", ",", "c", ".", "id", ")", ")", "generate_network", "(", "network", ",", "nrn_handler", ",", "generate_network", ",", "base_dir", ")", "if", "return_results", ":", "raise", "NotImplementedError", "(", "\"Reloading results not supported in Neuron yet...\"", ")", "elif", "simulator", ".", "lower", "(", ")", "==", "'sonata'", ":", "# Will not \"run\" obviously...", "from", "neuromllite", ".", "SonataHandler", "import", "SonataHandler", "sonata_handler", "=", "SonataHandler", "(", ")", "generate_network", "(", "network", ",", "sonata_handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "print_v", "(", "\"Done with Sonata...\"", ")", "elif", "simulator", ".", "lower", "(", ")", ".", "startswith", "(", "'graph'", ")", ":", "# Will not \"run\" obviously...", "from", "neuromllite", ".", "GraphVizHandler", "import", "GraphVizHandler", ",", "engines", "try", ":", "if", "simulator", "[", "-", "1", "]", ".", "isalpha", "(", ")", ":", "print", "simulator", "print", "simulator", "[", "5", ":", "]", "print", "simulator", "[", "5", ":", "-", "1", "]", "engine", "=", "engines", "[", "simulator", "[", "-", "1", "]", "]", "level", "=", "int", "(", "simulator", "[", "5", ":", "-", "1", "]", ")", "else", ":", "engine", "=", "'dot'", "level", "=", "int", "(", "simulator", "[", "5", ":", "]", ")", "except", "Exception", "as", "e", ":", "print", "e", "print_v", "(", "\"Error parsing: %s\"", "%", "simulator", ")", "print_v", "(", "\"Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc.\"", ")", "return", "handler", "=", "GraphVizHandler", "(", "level", ",", "engine", "=", "engine", ",", "nl_network", "=", "network", ")", "generate_network", "(", "network", ",", "handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "print_v", "(", "\"Done with GraphViz...\"", ")", "elif", "simulator", ".", "lower", "(", ")", ".", "startswith", "(", "'matrix'", ")", ":", "# Will not \"run\" obviously...", "from", "neuromllite", ".", "MatrixHandler", "import", "MatrixHandler", "try", ":", "level", "=", "int", "(", "simulator", "[", "6", ":", "]", ")", "except", ":", "print_v", "(", "\"Error parsing: %s\"", "%", "simulator", ")", "print_v", "(", "\"Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc.\"", ")", "return", "handler", "=", "MatrixHandler", "(", "level", ",", "nl_network", "=", "network", ")", "generate_network", "(", "network", ",", "handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "print_v", "(", "\"Done with MatrixHandler...\"", ")", "elif", "simulator", ".", "startswith", "(", "'PyNN'", ")", ":", "#_generate_neuron_files_from_neuroml(network)", "simulator_name", "=", "simulator", ".", "split", "(", "'_'", ")", "[", "1", "]", ".", "lower", "(", ")", "from", "neuromllite", ".", "PyNNHandler", "import", "PyNNHandler", "pynn_handler", "=", "PyNNHandler", "(", "simulator_name", ",", "simulation", ".", "dt", ",", "network", ".", "id", ")", "syn_cell_params", "=", "{", "}", "for", "proj", "in", "network", ".", "projections", ":", "synapse", "=", "network", ".", "get_child", "(", "proj", ".", "synapse", ",", "'synapses'", ")", "post_pop", "=", "network", ".", "get_child", "(", "proj", ".", "postsynaptic", ",", "'populations'", ")", "if", "not", "post_pop", ".", "component", "in", "syn_cell_params", ":", "syn_cell_params", "[", "post_pop", ".", "component", "]", "=", "{", "}", "for", "p", "in", "synapse", ".", "parameters", ":", "post", "=", "''", "if", "synapse", ".", "pynn_receptor_type", "==", "\"excitatory\"", ":", "post", "=", "'_E'", "elif", "synapse", ".", "pynn_receptor_type", "==", "\"inhibitory\"", ":", "post", "=", "'_I'", "syn_cell_params", "[", "post_pop", ".", "component", "]", "[", "'%s%s'", "%", "(", "p", ",", "post", ")", "]", "=", "synapse", ".", "parameters", "[", "p", "]", "cells", "=", "{", "}", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "pynn_cell", ":", "cell_params", "=", "{", "}", "if", "c", ".", "parameters", ":", "for", "p", "in", "c", ".", "parameters", ":", "cell_params", "[", "p", "]", "=", "evaluate", "(", "c", ".", "parameters", "[", "p", "]", ",", "network", ".", "parameters", ")", "dont_set_here", "=", "[", "'tau_syn_E'", ",", "'e_rev_E'", ",", "'tau_syn_I'", ",", "'e_rev_I'", "]", "for", "d", "in", "dont_set_here", ":", "if", "d", "in", "c", ".", "parameters", ":", "raise", "Exception", "(", "'Synaptic parameters like %s should be set '", "+", "'in individual synapses, not in the list of parameters associated with the cell'", "%", "d", ")", "if", "c", ".", "id", "in", "syn_cell_params", ":", "cell_params", ".", "update", "(", "syn_cell_params", "[", "c", ".", "id", "]", ")", "print_v", "(", "\"Creating cell with params: %s\"", "%", "cell_params", ")", "exec", "(", "'cells[\"%s\"] = pynn_handler.sim.%s(**cell_params)'", "%", "(", "c", ".", "id", ",", "c", ".", "pynn_cell", ")", ")", "if", "c", ".", "pynn_cell", "!=", "'SpikeSourcePoisson'", ":", "exec", "(", "\"cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value\"", "%", "(", "c", ".", "id", ",", "c", ".", "id", ")", ")", "pynn_handler", ".", "set_cells", "(", "cells", ")", "receptor_types", "=", "{", "}", "for", "s", "in", "network", ".", "synapses", ":", "if", "s", ".", "pynn_receptor_type", ":", "receptor_types", "[", "s", ".", "id", "]", "=", "s", ".", "pynn_receptor_type", "pynn_handler", ".", "set_receptor_types", "(", "receptor_types", ")", "for", "input_source", "in", "network", ".", "input_sources", ":", "if", "input_source", ".", "pynn_input", ":", "pynn_handler", ".", "add_input_source", "(", "input_source", ")", "generate_network", "(", "network", ",", "pynn_handler", ",", "always_include_props", "=", "True", ",", "base_dir", "=", "base_dir", ")", "for", "pid", "in", "pynn_handler", ".", "populations", ":", "pop", "=", "pynn_handler", ".", "populations", "[", "pid", "]", "if", "'all'", "in", "simulation", ".", "recordTraces", "or", "pop", ".", "label", "in", "simulation", ".", "recordTraces", ":", "if", "pop", ".", "can_record", "(", "'v'", ")", ":", "pop", ".", "record", "(", "'v'", ")", "pynn_handler", ".", "sim", ".", "run", "(", "simulation", ".", "duration", ")", "pynn_handler", ".", "sim", ".", "end", "(", ")", "traces", "=", "{", "}", "events", "=", "{", "}", "if", "not", "'NeuroML'", "in", "simulator", ":", "from", "neo", ".", "io", "import", "PyNNTextIO", "for", "pid", "in", "pynn_handler", ".", "populations", ":", "pop", "=", "pynn_handler", ".", "populations", "[", "pid", "]", "if", "'all'", "in", "simulation", ".", "recordTraces", "or", "pop", ".", "label", "in", "simulation", ".", "recordTraces", ":", "filename", "=", "\"%s.%s.v.dat\"", "%", "(", "simulation", ".", "id", ",", "pop", ".", "label", ")", "all_columns", "=", "[", "]", "print_v", "(", "\"Writing data for %s to %s\"", "%", "(", "pop", ".", "label", ",", "filename", ")", ")", "for", "i", "in", "range", "(", "len", "(", "pop", ")", ")", ":", "if", "pop", ".", "can_record", "(", "'v'", ")", ":", "ref", "=", "'%s[%i]'", "%", "(", "pop", ".", "label", ",", "i", ")", "traces", "[", "ref", "]", "=", "[", "]", "data", "=", "pop", ".", "get_data", "(", "'v'", ",", "gather", "=", "False", ")", "for", "segment", "in", "data", ".", "segments", ":", "vm", "=", "segment", ".", "analogsignals", "[", "0", "]", ".", "transpose", "(", ")", "[", "i", "]", "if", "len", "(", "all_columns", ")", "==", "0", ":", "tt", "=", "np", ".", "array", "(", "[", "t", "*", "simulation", ".", "dt", "/", "1000.", "for", "t", "in", "range", "(", "len", "(", "vm", ")", ")", "]", ")", "all_columns", ".", "append", "(", "tt", ")", "vm_si", "=", "[", "float", "(", "v", "/", "1000.", ")", "for", "v", "in", "vm", "]", "traces", "[", "ref", "]", "=", "vm_si", "all_columns", ".", "append", "(", "vm_si", ")", "times_vm", "=", "np", ".", "array", "(", "all_columns", ")", ".", "transpose", "(", ")", "np", ".", "savetxt", "(", "filename", ",", "times_vm", ",", "delimiter", "=", "'\\t'", ",", "fmt", "=", "'%s'", ")", "if", "return_results", ":", "_print_result_info", "(", "traces", ",", "events", ")", "return", "traces", ",", "events", "elif", "simulator", "==", "'NetPyNE'", ":", "if", "target_dir", "==", "None", ":", "target_dir", "=", "'./'", "_generate_neuron_files_from_neuroml", "(", "network", ",", "dir_for_mod_files", "=", "target_dir", ")", "from", "netpyne", "import", "specs", "from", "netpyne", "import", "sim", "# Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates", "from", "netpyne", ".", "conversion", ".", "neuromlFormat", "import", "NetPyNEBuilder", "import", "pprint", "pp", "=", "pprint", ".", "PrettyPrinter", "(", "depth", "=", "6", ")", "netParams", "=", "specs", ".", "NetParams", "(", ")", "simConfig", "=", "specs", ".", "SimConfig", "(", ")", "netpyne_handler", "=", "NetPyNEBuilder", "(", "netParams", ",", "simConfig", "=", "simConfig", ",", "verbose", "=", "True", ")", "generate_network", "(", "network", ",", "netpyne_handler", ",", "base_dir", "=", "base_dir", ")", "netpyne_handler", ".", "finalise", "(", ")", "simConfig", "=", "specs", ".", "SimConfig", "(", ")", "simConfig", ".", "tstop", "=", "simulation", ".", "duration", "simConfig", ".", "duration", "=", "simulation", ".", "duration", "simConfig", ".", "dt", "=", "simulation", ".", "dt", "simConfig", ".", "seed", "=", "simulation", ".", "seed", "simConfig", ".", "recordStep", "=", "simulation", ".", "dt", "simConfig", ".", "recordCells", "=", "[", "'all'", "]", "simConfig", ".", "recordTraces", "=", "{", "}", "for", "pop", "in", "netpyne_handler", ".", "popParams", ".", "values", "(", ")", ":", "if", "'all'", "in", "simulation", ".", "recordTraces", "or", "pop", ".", "id", "in", "simulation", ".", "recordTraces", ":", "for", "i", "in", "pop", "[", "'cellsList'", "]", ":", "id", "=", "pop", "[", "'pop'", "]", "index", "=", "i", "[", "'cellLabel'", "]", "simConfig", ".", "recordTraces", "[", "'v_%s_%s'", "%", "(", "id", ",", "index", ")", "]", "=", "{", "'sec'", ":", "'soma'", ",", "'loc'", ":", "0.5", ",", "'var'", ":", "'v'", ",", "'conds'", ":", "{", "'pop'", ":", "id", ",", "'cellLabel'", ":", "index", "}", "}", "simConfig", ".", "saveDat", "=", "True", "print_v", "(", "\"NetPyNE netParams: \"", ")", "pp", ".", "pprint", "(", "netParams", ".", "todict", "(", ")", ")", "#print_v(\"NetPyNE simConfig: \")", "#pp.pprint(simConfig.todict())", "sim", ".", "initialize", "(", "netParams", ",", "simConfig", ")", "# create network object and set cfg and net params", "sim", ".", "net", ".", "createPops", "(", ")", "cells", "=", "sim", ".", "net", ".", "createCells", "(", ")", "# instantiate network cells based on defined populations ", "for", "proj_id", "in", "netpyne_handler", ".", "projection_infos", ".", "keys", "(", ")", ":", "projName", ",", "prePop", ",", "postPop", ",", "synapse", ",", "ptype", "=", "netpyne_handler", ".", "projection_infos", "[", "proj_id", "]", "print_v", "(", "\"Creating connections for %s (%s): %s->%s via %s\"", "%", "(", "projName", ",", "ptype", ",", "prePop", ",", "postPop", ",", "synapse", ")", ")", "preComp", "=", "netpyne_handler", ".", "pop_ids_vs_components", "[", "prePop", "]", "for", "conn", "in", "netpyne_handler", ".", "connections", "[", "projName", "]", ":", "pre_id", ",", "pre_seg", ",", "pre_fract", ",", "post_id", ",", "post_seg", ",", "post_fract", ",", "delay", ",", "weight", "=", "conn", "#connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold}", "connParam", "=", "{", "'delay'", ":", "delay", ",", "'weight'", ":", "weight", ",", "'synsPerConn'", ":", "1", ",", "'sec'", ":", "post_seg", ",", "'loc'", ":", "post_fract", "}", "if", "ptype", "==", "'electricalProjection'", ":", "if", "weight", "!=", "1", ":", "raise", "Exception", "(", "'Cannot yet support inputs where weight !=1!'", ")", "connParam", "=", "{", "'synsPerConn'", ":", "1", ",", "'sec'", ":", "post_seg", ",", "'loc'", ":", "post_fract", ",", "'gapJunction'", ":", "True", ",", "'weight'", ":", "weight", "}", "else", ":", "connParam", "=", "{", "'delay'", ":", "delay", ",", "'weight'", ":", "weight", ",", "'synsPerConn'", ":", "1", ",", "'sec'", ":", "post_seg", ",", "'loc'", ":", "post_fract", "}", "#'threshold': threshold}", "connParam", "[", "'synMech'", "]", "=", "synapse", "if", "post_id", "in", "sim", ".", "net", ".", "gid2lid", ":", "# check if postsyn is in this node's list of gids", "sim", ".", "net", ".", "_addCellConn", "(", "connParam", ",", "pre_id", ",", "post_id", ")", "stims", "=", "sim", ".", "net", ".", "addStims", "(", ")", "# add external stimulation to cells (IClamps etc)", "simData", "=", "sim", ".", "setupRecording", "(", ")", "# setup variables to record for each cell (spikes, V traces, etc)", "sim", ".", "runSim", "(", ")", "# run parallel Neuron simulation ", "sim", ".", "gatherData", "(", ")", "# gather spiking data and cell info from each node", "sim", ".", "saveData", "(", ")", "# save params, cell info and sim output to file (pickle,mat,txt,etc)", "if", "return_results", ":", "raise", "NotImplementedError", "(", "\"Reloading results not supported in NetPyNE yet...\"", ")", "elif", "simulator", "==", "'jNeuroML'", "or", "simulator", "==", "'jNeuroML_NEURON'", "or", "simulator", "==", "'jNeuroML_NetPyNE'", ":", "from", "pyneuroml", ".", "lems", "import", "generate_lems_file_for_neuroml", "from", "pyneuroml", "import", "pynml", "lems_file_name", "=", "'LEMS_%s.xml'", "%", "simulation", ".", "id", "nml_file_name", ",", "nml_doc", "=", "generate_neuroml2_from_network", "(", "network", ",", "base_dir", "=", "base_dir", ",", "target_dir", "=", "target_dir", ")", "included_files", "=", "[", "'PyNN.xml'", "]", "for", "c", "in", "network", ".", "cells", ":", "if", "c", ".", "lems_source_file", ":", "included_files", ".", "append", "(", "c", ".", "lems_source_file", ")", "'''\n if network.cells:\n for c in network.cells:\n included_files.append(c.neuroml2_source_file)\n '''", "if", "network", ".", "synapses", ":", "for", "s", "in", "network", ".", "synapses", ":", "if", "s", ".", "lems_source_file", ":", "included_files", ".", "append", "(", "s", ".", "lems_source_file", ")", "print_v", "(", "\"Generating LEMS file prior to running in %s\"", "%", "simulator", ")", "pops_plot_save", "=", "[", "]", "pops_spike_save", "=", "[", "]", "gen_plots_for_quantities", "=", "{", "}", "gen_saves_for_quantities", "=", "{", "}", "for", "p", "in", "network", ".", "populations", ":", "if", "simulation", ".", "recordTraces", "and", "(", "'all'", "in", "simulation", ".", "recordTraces", "or", "p", ".", "id", "in", "simulation", ".", "recordTraces", ")", ":", "pops_plot_save", ".", "append", "(", "p", ".", "id", ")", "if", "simulation", ".", "recordSpikes", "and", "(", "'all'", "in", "simulation", ".", "recordSpikes", "or", "p", ".", "id", "in", "simulation", ".", "recordSpikes", ")", ":", "pops_spike_save", ".", "append", "(", "p", ".", "id", ")", "if", "simulation", ".", "recordRates", "and", "(", "'all'", "in", "simulation", ".", "recordRates", "or", "p", ".", "id", "in", "simulation", ".", "recordRates", ")", ":", "size", "=", "evaluate", "(", "p", ".", "size", ",", "network", ".", "parameters", ")", "for", "i", "in", "range", "(", "size", ")", ":", "quantity", "=", "'%s/%i/%s/r'", "%", "(", "p", ".", "id", ",", "i", ",", "p", ".", "component", ")", "gen_plots_for_quantities", "[", "'%s_%i_r'", "%", "(", "p", ".", "id", ",", "i", ")", "]", "=", "[", "quantity", "]", "gen_saves_for_quantities", "[", "'%s_%i.r.dat'", "%", "(", "p", ".", "id", ",", "i", ")", "]", "=", "[", "quantity", "]", "if", "simulation", ".", "recordVariables", ":", "for", "var", "in", "simulation", ".", "recordVariables", ":", "to_rec", "=", "simulation", ".", "recordVariables", "[", "var", "]", "if", "(", "'all'", "in", "to_rec", "or", "p", ".", "id", "in", "to_rec", ")", ":", "size", "=", "evaluate", "(", "p", ".", "size", ",", "network", ".", "parameters", ")", "for", "i", "in", "range", "(", "size", ")", ":", "quantity", "=", "'%s/%i/%s/%s'", "%", "(", "p", ".", "id", ",", "i", ",", "p", ".", "component", ",", "var", ")", "gen_plots_for_quantities", "[", "'%s_%i_%s'", "%", "(", "p", ".", "id", ",", "i", ",", "var", ")", "]", "=", "[", "quantity", "]", "gen_saves_for_quantities", "[", "'%s_%i.%s.dat'", "%", "(", "p", ".", "id", ",", "i", ",", "var", ")", "]", "=", "[", "quantity", "]", "generate_lems_file_for_neuroml", "(", "simulation", ".", "id", ",", "nml_file_name", ",", "network", ".", "id", ",", "simulation", ".", "duration", ",", "simulation", ".", "dt", ",", "lems_file_name", ",", "target_dir", "=", "target_dir", "if", "target_dir", "else", "'.'", ",", "nml_doc", "=", "nml_doc", ",", "# Use this if the nml doc has already been loaded (to avoid delay in reload)", "include_extra_files", "=", "included_files", ",", "gen_plots_for_all_v", "=", "False", ",", "plot_all_segments", "=", "False", ",", "gen_plots_for_quantities", "=", "gen_plots_for_quantities", ",", "# Dict with displays vs lists of quantity paths", "gen_plots_for_only_populations", "=", "pops_plot_save", ",", "# List of populations, all pops if = []", "gen_saves_for_all_v", "=", "False", ",", "save_all_segments", "=", "False", ",", "gen_saves_for_only_populations", "=", "pops_plot_save", ",", "# List of populations, all pops if = []", "gen_saves_for_quantities", "=", "gen_saves_for_quantities", ",", "# Dict with file names vs lists of quantity paths", "gen_spike_saves_for_all_somas", "=", "False", ",", "gen_spike_saves_for_only_populations", "=", "pops_spike_save", ",", "# List of populations, all pops if = []", "gen_spike_saves_for_cells", "=", "{", "}", ",", "# Dict with file names vs lists of quantity paths", "spike_time_format", "=", "'ID_TIME'", ",", "copy_neuroml", "=", "True", ",", "lems_file_generate_seed", "=", "12345", ",", "report_file_name", "=", "'report.%s.txt'", "%", "simulation", ".", "id", ",", "simulation_seed", "=", "simulation", ".", "seed", "if", "simulation", ".", "seed", "else", "12345", ",", "verbose", "=", "True", ")", "lems_file_name", "=", "_locate_file", "(", "lems_file_name", ",", "target_dir", ")", "if", "simulator", "==", "'jNeuroML'", ":", "results", "=", "pynml", ".", "run_lems_with_jneuroml", "(", "lems_file_name", ",", "nogui", "=", "True", ",", "load_saved_data", "=", "return_results", ",", "reload_events", "=", "return_results", ")", "elif", "simulator", "==", "'jNeuroML_NEURON'", ":", "results", "=", "pynml", ".", "run_lems_with_jneuroml_neuron", "(", "lems_file_name", ",", "nogui", "=", "True", ",", "load_saved_data", "=", "return_results", ",", "reload_events", "=", "return_results", ")", "elif", "simulator", "==", "'jNeuroML_NetPyNE'", ":", "results", "=", "pynml", ".", "run_lems_with_jneuroml_netpyne", "(", "lems_file_name", ",", "nogui", "=", "True", ",", "verbose", "=", "True", ",", "load_saved_data", "=", "return_results", ",", "reload_events", "=", "return_results", ",", "num_processors", "=", "num_processors", ")", "print_v", "(", "\"Finished running LEMS file %s in %s (returning results: %s)\"", "%", "(", "lems_file_name", ",", "simulator", ",", "return_results", ")", ")", "if", "return_results", ":", "traces", ",", "events", "=", "results", "_print_result_info", "(", "traces", ",", "events", ")", "return", "results" ]
45.574879
0.013329
def types_strict(instance): """Ensure that no custom object types are used, but only the official ones from the specification. """ if instance['type'] not in enums.TYPES: yield JSONError("Object type '%s' is not one of those defined in the" " specification." % instance['type'], instance['id']) if has_cyber_observable_data(instance): for key, obj in instance['objects'].items(): if 'type' in obj and obj['type'] not in enums.OBSERVABLE_TYPES: yield JSONError("Observable object %s is type '%s' which is " "not one of those defined in the " "specification." % (key, obj['type']), instance['id'])
[ "def", "types_strict", "(", "instance", ")", ":", "if", "instance", "[", "'type'", "]", "not", "in", "enums", ".", "TYPES", ":", "yield", "JSONError", "(", "\"Object type '%s' is not one of those defined in the\"", "\" specification.\"", "%", "instance", "[", "'type'", "]", ",", "instance", "[", "'id'", "]", ")", "if", "has_cyber_observable_data", "(", "instance", ")", ":", "for", "key", ",", "obj", "in", "instance", "[", "'objects'", "]", ".", "items", "(", ")", ":", "if", "'type'", "in", "obj", "and", "obj", "[", "'type'", "]", "not", "in", "enums", ".", "OBSERVABLE_TYPES", ":", "yield", "JSONError", "(", "\"Observable object %s is type '%s' which is \"", "\"not one of those defined in the \"", "\"specification.\"", "%", "(", "key", ",", "obj", "[", "'type'", "]", ")", ",", "instance", "[", "'id'", "]", ")" ]
51.066667
0.001282
def render_to_message(self, extra_context=None, **kwargs): """ Renders and returns an unsent message with the provided context. Any extra keyword arguments passed will be passed through as keyword arguments to the message constructor. :param extra_context: Any additional context to use when rendering the templated content. :type extra_context: :class:`dict` :returns: A message instance. :rtype: :attr:`.message_class` """ if extra_context is None: extra_context = {} # Ensure our custom headers are added to the underlying message class. kwargs.setdefault('headers', {}).update(self.headers) context = self.get_context_data(**extra_context) return self.message_class( subject=self.render_subject(context), body=self.render_body(context), **kwargs)
[ "def", "render_to_message", "(", "self", ",", "extra_context", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "extra_context", "is", "None", ":", "extra_context", "=", "{", "}", "# Ensure our custom headers are added to the underlying message class.", "kwargs", ".", "setdefault", "(", "'headers'", ",", "{", "}", ")", ".", "update", "(", "self", ".", "headers", ")", "context", "=", "self", ".", "get_context_data", "(", "*", "*", "extra_context", ")", "return", "self", ".", "message_class", "(", "subject", "=", "self", ".", "render_subject", "(", "context", ")", ",", "body", "=", "self", ".", "render_body", "(", "context", ")", ",", "*", "*", "kwargs", ")" ]
37.625
0.00216
def logpdf_link(self, link_f, y, Y_metadata=None): """ :param link_f: latent variables (link(f)) :type link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: includes censoring information in dictionary key 'censored' :returns: likelihood evaluated for this point :rtype: float """ assert np.atleast_1d(link_f).shape == np.atleast_1d(y).shape c = np.zeros_like(y) if Y_metadata is not None and 'censored' in Y_metadata.keys(): c = Y_metadata['censored'] uncensored = (1-c)* (-0.5*np.log(2*np.pi*self.variance) - np.log(y) - (np.log(y)-link_f)**2 /(2*self.variance) ) censored = c*np.log( 1 - stats.norm.cdf((np.log(y) - link_f)/np.sqrt(self.variance)) ) logpdf = uncensored + censored return logpdf
[ "def", "logpdf_link", "(", "self", ",", "link_f", ",", "y", ",", "Y_metadata", "=", "None", ")", ":", "assert", "np", ".", "atleast_1d", "(", "link_f", ")", ".", "shape", "==", "np", ".", "atleast_1d", "(", "y", ")", ".", "shape", "c", "=", "np", ".", "zeros_like", "(", "y", ")", "if", "Y_metadata", "is", "not", "None", "and", "'censored'", "in", "Y_metadata", ".", "keys", "(", ")", ":", "c", "=", "Y_metadata", "[", "'censored'", "]", "uncensored", "=", "(", "1", "-", "c", ")", "*", "(", "-", "0.5", "*", "np", ".", "log", "(", "2", "*", "np", ".", "pi", "*", "self", ".", "variance", ")", "-", "np", ".", "log", "(", "y", ")", "-", "(", "np", ".", "log", "(", "y", ")", "-", "link_f", ")", "**", "2", "/", "(", "2", "*", "self", ".", "variance", ")", ")", "censored", "=", "c", "*", "np", ".", "log", "(", "1", "-", "stats", ".", "norm", ".", "cdf", "(", "(", "np", ".", "log", "(", "y", ")", "-", "link_f", ")", "/", "np", ".", "sqrt", "(", "self", ".", "variance", ")", ")", ")", "logpdf", "=", "uncensored", "+", "censored", "return", "logpdf" ]
44.052632
0.011696
def mysql(host, user, passwd, db, charset): """Set MySQL/MariaDB connection""" connection_string = database.set_mysql_connection(host=host, user=user, passwd=passwd, db=db, charset=charset) test_connection(connection_string)
[ "def", "mysql", "(", "host", ",", "user", ",", "passwd", ",", "db", ",", "charset", ")", ":", "connection_string", "=", "database", ".", "set_mysql_connection", "(", "host", "=", "host", ",", "user", "=", "user", ",", "passwd", "=", "passwd", ",", "db", "=", "db", ",", "charset", "=", "charset", ")", "test_connection", "(", "connection_string", ")" ]
58.25
0.008475
def update_id(self, sequence_id=None): """Alter the sequence id, and all of the names and ids derived from it. This often needs to be done after an IntegrityError in a multiprocessing run""" if sequence_id: self.sequence_id = sequence_id self._set_ids(force=True) if self.dataset: self._update_names()
[ "def", "update_id", "(", "self", ",", "sequence_id", "=", "None", ")", ":", "if", "sequence_id", ":", "self", ".", "sequence_id", "=", "sequence_id", "self", ".", "_set_ids", "(", "force", "=", "True", ")", "if", "self", ".", "dataset", ":", "self", ".", "_update_names", "(", ")" ]
32.545455
0.01087
def import_class(class_path): """imports and returns given class string. :param class_path: Class path as string :type class_path: str :returns: Class that has given path :rtype: class :Example: >>> import_class('collections.OrderedDict').__name__ 'OrderedDict' """ try: from django.utils.importlib import import_module module_name = '.'.join(class_path.split(".")[:-1]) mod = import_module(module_name) return getattr(mod, class_path.split(".")[-1]) except Exception, detail: raise ImportError(detail)
[ "def", "import_class", "(", "class_path", ")", ":", "try", ":", "from", "django", ".", "utils", ".", "importlib", "import", "import_module", "module_name", "=", "'.'", ".", "join", "(", "class_path", ".", "split", "(", "\".\"", ")", "[", ":", "-", "1", "]", ")", "mod", "=", "import_module", "(", "module_name", ")", "return", "getattr", "(", "mod", ",", "class_path", ".", "split", "(", "\".\"", ")", "[", "-", "1", "]", ")", "except", "Exception", ",", "detail", ":", "raise", "ImportError", "(", "detail", ")" ]
27.142857
0.001695
def get_pipeline_names(): """Returns the class paths of all Pipelines defined in alphabetical order.""" class_path_set = set() for cls in _PipelineMeta._all_classes: if cls.class_path is not None: class_path_set.add(cls.class_path) return sorted(class_path_set)
[ "def", "get_pipeline_names", "(", ")", ":", "class_path_set", "=", "set", "(", ")", "for", "cls", "in", "_PipelineMeta", ".", "_all_classes", ":", "if", "cls", ".", "class_path", "is", "not", "None", ":", "class_path_set", ".", "add", "(", "cls", ".", "class_path", ")", "return", "sorted", "(", "class_path_set", ")" ]
39.571429
0.021201
def _send_signal(self, unique_id, signalno, configs): """ Issues a signal for the specified process :Parameter unique_id: the name of the process """ pids = self.get_pid(unique_id, configs) if pids != constants.PROCESS_NOT_RUNNING_PID: pid_str = ' '.join(str(pid) for pid in pids) hostname = self.processes[unique_id].hostname msg= Deployer._signalnames.get(signalno,"SENDING SIGNAL %s TO"%signalno) with get_ssh_client(hostname, username=runtime.get_username(), password=runtime.get_password()) as ssh: better_exec_command(ssh, "kill -{0} {1}".format(signalno, pid_str), "{0} PROCESS {1}".format(msg, unique_id))
[ "def", "_send_signal", "(", "self", ",", "unique_id", ",", "signalno", ",", "configs", ")", ":", "pids", "=", "self", ".", "get_pid", "(", "unique_id", ",", "configs", ")", "if", "pids", "!=", "constants", ".", "PROCESS_NOT_RUNNING_PID", ":", "pid_str", "=", "' '", ".", "join", "(", "str", "(", "pid", ")", "for", "pid", "in", "pids", ")", "hostname", "=", "self", ".", "processes", "[", "unique_id", "]", ".", "hostname", "msg", "=", "Deployer", ".", "_signalnames", ".", "get", "(", "signalno", ",", "\"SENDING SIGNAL %s TO\"", "%", "signalno", ")", "with", "get_ssh_client", "(", "hostname", ",", "username", "=", "runtime", ".", "get_username", "(", ")", ",", "password", "=", "runtime", ".", "get_password", "(", ")", ")", "as", "ssh", ":", "better_exec_command", "(", "ssh", ",", "\"kill -{0} {1}\"", ".", "format", "(", "signalno", ",", "pid_str", ")", ",", "\"{0} PROCESS {1}\"", ".", "format", "(", "msg", ",", "unique_id", ")", ")" ]
54.666667
0.016492
def copy_db(source_env, destination_env): """ Copies Db betweem servers, ie develop to qa. Should be called by function from function defined in project fabfile. Example usage: def copy_db_between_servers(source_server, destination_server): source_env = {} destination_env = {} def populate_env_dict(server, local_env): app_dir = 'nutrimom' if server == 'nm-dev': user = 'nutrimom-dev' prefix = "dev" environment = 'devel' host_string = 'dev.arabel.la' elif server == 'nm-qa': user = 'nutrimom-qa' prefix = "qa" environment = 'qa' host_string = 'qa.arabel.la' elif server.startswith('nm-f'): if server in ['nm-f1', 'nm-f2', 'nm-f3', 'nm-f4', 'nm-f5']: user = 'nutrimom-' + server.split('-')[1] prefix = user.split('-')[1] environment = prefix host_string = 'dev.arabel.la' else: print ("supported params: nm-dev, nm-qa, nm-fx") sys.exit() local_env['app_dir'] = app_dir local_env['remote_user'] = user local_env['remote_path'] = '/home/%s/www/' % (user) local_env['dir'] = '/home/%s/Envs/%s' % (user, app_dir) local_env['python'] = '/home/%s/Envs/%s/bin/python' % (user, app_dir) local_env['pip'] = '/home/%s/Envs/%s/bin/pip' % (user, app_dir) local_env['prefix'] = prefix local_env['environment'] = environment local_env['host_string'] = host_string local_env['is_feature'] = False return local_env source_env = populate_env_dict(source_server, source_env) destination_env = populate_env_dict(destination_server, destination_env) copy_db(source_env, destination_env) """ env.update(source_env) local_file_path = _get_db() # put the file on external file system # clean external db # load database into external file system env.update(destination_env) with cd(env.remote_path): sudo('mkdir -p backups', user=env.remote_user) sudo(env.python + ' manage.py dump_database | gzip > backups/' + _sql_paths('local', datetime.now())) put(local_file_path, 'backups', use_sudo=True) sudo(env.python + ' manage.py clear_database', user=env.remote_user) if local_file_path.endswith('.gz'): # the path is the same here and there sudo('gzip -dc %s | %s manage.py dbshell' % (local_file_path, env.python), user=env.remote_user) else: sudo('%s manage.py dbshell < %s ' % (env.python, local_file_path), user=env.remote_user)
[ "def", "copy_db", "(", "source_env", ",", "destination_env", ")", ":", "env", ".", "update", "(", "source_env", ")", "local_file_path", "=", "_get_db", "(", ")", "# put the file on external file system", "# clean external db", "# load database into external file system", "env", ".", "update", "(", "destination_env", ")", "with", "cd", "(", "env", ".", "remote_path", ")", ":", "sudo", "(", "'mkdir -p backups'", ",", "user", "=", "env", ".", "remote_user", ")", "sudo", "(", "env", ".", "python", "+", "' manage.py dump_database | gzip > backups/'", "+", "_sql_paths", "(", "'local'", ",", "datetime", ".", "now", "(", ")", ")", ")", "put", "(", "local_file_path", ",", "'backups'", ",", "use_sudo", "=", "True", ")", "sudo", "(", "env", ".", "python", "+", "' manage.py clear_database'", ",", "user", "=", "env", ".", "remote_user", ")", "if", "local_file_path", ".", "endswith", "(", "'.gz'", ")", ":", "# the path is the same here and there", "sudo", "(", "'gzip -dc %s | %s manage.py dbshell'", "%", "(", "local_file_path", ",", "env", ".", "python", ")", ",", "user", "=", "env", ".", "remote_user", ")", "else", ":", "sudo", "(", "'%s manage.py dbshell < %s '", "%", "(", "env", ".", "python", ",", "local_file_path", ")", ",", "user", "=", "env", ".", "remote_user", ")" ]
43.80597
0.002333
def extract_version(exepath, version_arg, word_index=-1, version_rank=3): """Run an executable and get the program version. Args: exepath: Filepath to executable. version_arg: Arg to pass to program, eg "-V". Can also be a list. word_index: Expect the Nth word of output to be the version. version_rank: Cap the version to this many tokens. Returns: `Version` object. """ if isinstance(version_arg, basestring): version_arg = [version_arg] args = [exepath] + version_arg stdout, stderr, returncode = _run_command(args) if returncode: raise RezBindError("failed to execute %s: %s\n(error code %d)" % (exepath, stderr, returncode)) stdout = stdout.strip().split('\n')[0].strip() log("extracting version from output: '%s'" % stdout) try: strver = stdout.split()[word_index] toks = strver.replace('.', ' ').replace('-', ' ').split() strver = '.'.join(toks[:version_rank]) version = Version(strver) except Exception as e: raise RezBindError("failed to parse version from output '%s': %s" % (stdout, str(e))) log("extracted version: '%s'" % str(version)) return version
[ "def", "extract_version", "(", "exepath", ",", "version_arg", ",", "word_index", "=", "-", "1", ",", "version_rank", "=", "3", ")", ":", "if", "isinstance", "(", "version_arg", ",", "basestring", ")", ":", "version_arg", "=", "[", "version_arg", "]", "args", "=", "[", "exepath", "]", "+", "version_arg", "stdout", ",", "stderr", ",", "returncode", "=", "_run_command", "(", "args", ")", "if", "returncode", ":", "raise", "RezBindError", "(", "\"failed to execute %s: %s\\n(error code %d)\"", "%", "(", "exepath", ",", "stderr", ",", "returncode", ")", ")", "stdout", "=", "stdout", ".", "strip", "(", ")", ".", "split", "(", "'\\n'", ")", "[", "0", "]", ".", "strip", "(", ")", "log", "(", "\"extracting version from output: '%s'\"", "%", "stdout", ")", "try", ":", "strver", "=", "stdout", ".", "split", "(", ")", "[", "word_index", "]", "toks", "=", "strver", ".", "replace", "(", "'.'", ",", "' '", ")", ".", "replace", "(", "'-'", ",", "' '", ")", ".", "split", "(", ")", "strver", "=", "'.'", ".", "join", "(", "toks", "[", ":", "version_rank", "]", ")", "version", "=", "Version", "(", "strver", ")", "except", "Exception", "as", "e", ":", "raise", "RezBindError", "(", "\"failed to parse version from output '%s': %s\"", "%", "(", "stdout", ",", "str", "(", "e", ")", ")", ")", "log", "(", "\"extracted version: '%s'\"", "%", "str", "(", "version", ")", ")", "return", "version" ]
35.457143
0.000784
def insert_route(**kw): """ `path` - '/', '/some/other/path/', '/test/<int:index>/' `node_id` `weight` - How this path is selected before other similar paths `method` - 'GET' is default. """ binding = { 'path': None, 'node_id': None, 'weight': None, 'method': "GET" } binding.update(kw) with current_app.app_context(): db.execute(text(fetch_query_string('insert_route.sql')), **binding)
[ "def", "insert_route", "(", "*", "*", "kw", ")", ":", "binding", "=", "{", "'path'", ":", "None", ",", "'node_id'", ":", "None", ",", "'weight'", ":", "None", ",", "'method'", ":", "\"GET\"", "}", "binding", ".", "update", "(", "kw", ")", "with", "current_app", ".", "app_context", "(", ")", ":", "db", ".", "execute", "(", "text", "(", "fetch_query_string", "(", "'insert_route.sql'", ")", ")", ",", "*", "*", "binding", ")" ]
29.6875
0.002041
def digest(args): """ %prog digest fastafile NspI,BfuCI Digest fasta sequences to map restriction site positions. """ p = OptionParser(digest.__doc__) p.set_outfile() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) fastafile, enzymes = args enzymes = enzymes.split(",") enzymes = [x for x in AllEnzymes if str(x) in enzymes] f = Fasta(fastafile, lazy=True) fw = must_open(opts.outfile, "w") header = ["Contig", "Length"] + [str(x) for x in enzymes] print("\t".join(header), file=fw) for name, rec in f.iteritems_ordered(): row = [name, len(rec)] for e in enzymes: pos = e.search(rec.seq) pos = "na" if not pos else "|".join(str(x) for x in pos) row.append(pos) print("\t".join(str(x) for x in row), file=fw)
[ "def", "digest", "(", "args", ")", ":", "p", "=", "OptionParser", "(", "digest", ".", "__doc__", ")", "p", ".", "set_outfile", "(", ")", "opts", ",", "args", "=", "p", ".", "parse_args", "(", "args", ")", "if", "len", "(", "args", ")", "!=", "2", ":", "sys", ".", "exit", "(", "not", "p", ".", "print_help", "(", ")", ")", "fastafile", ",", "enzymes", "=", "args", "enzymes", "=", "enzymes", ".", "split", "(", "\",\"", ")", "enzymes", "=", "[", "x", "for", "x", "in", "AllEnzymes", "if", "str", "(", "x", ")", "in", "enzymes", "]", "f", "=", "Fasta", "(", "fastafile", ",", "lazy", "=", "True", ")", "fw", "=", "must_open", "(", "opts", ".", "outfile", ",", "\"w\"", ")", "header", "=", "[", "\"Contig\"", ",", "\"Length\"", "]", "+", "[", "str", "(", "x", ")", "for", "x", "in", "enzymes", "]", "print", "(", "\"\\t\"", ".", "join", "(", "header", ")", ",", "file", "=", "fw", ")", "for", "name", ",", "rec", "in", "f", ".", "iteritems_ordered", "(", ")", ":", "row", "=", "[", "name", ",", "len", "(", "rec", ")", "]", "for", "e", "in", "enzymes", ":", "pos", "=", "e", ".", "search", "(", "rec", ".", "seq", ")", "pos", "=", "\"na\"", "if", "not", "pos", "else", "\"|\"", ".", "join", "(", "str", "(", "x", ")", "for", "x", "in", "pos", ")", "row", ".", "append", "(", "pos", ")", "print", "(", "\"\\t\"", ".", "join", "(", "str", "(", "x", ")", "for", "x", "in", "row", ")", ",", "file", "=", "fw", ")" ]
30.285714
0.001143
def is_running(conn, args): """ Run a command to check the status of a mon, return a boolean. We heavily depend on the format of the output, if that ever changes we need to modify this. Check daemon status for 3 times output of the status should be similar to:: mon.mira094: running {"version":"0.61.5"} or when it fails:: mon.mira094: dead {"version":"0.61.5"} mon.mira094: not running {"version":"0.61.5"} """ stdout, stderr, _ = remoto.process.check( conn, args ) result_string = b' '.join(stdout) for run_check in [b': running', b' start/running']: if run_check in result_string: return True return False
[ "def", "is_running", "(", "conn", ",", "args", ")", ":", "stdout", ",", "stderr", ",", "_", "=", "remoto", ".", "process", ".", "check", "(", "conn", ",", "args", ")", "result_string", "=", "b' '", ".", "join", "(", "stdout", ")", "for", "run_check", "in", "[", "b': running'", ",", "b' start/running'", "]", ":", "if", "run_check", "in", "result_string", ":", "return", "True", "return", "False" ]
28
0.001381
def map_add(self, key, mapkey, value, create=False, **kwargs): """ Set a value for a key in a map. .. warning:: The functionality of the various `map_*`, `list_*`, `queue_*` and `set_*` functions are considered experimental and are included in the library to demonstrate new functionality. They may change in the future or be removed entirely! These functions are all wrappers around the :meth:`mutate_in` or :meth:`lookup_in` methods. :param key: The document ID of the map :param mapkey: The key in the map to set :param value: The value to use (anything serializable to JSON) :param create: Whether the map should be created if it does not exist :param kwargs: Additional arguments passed to :meth:`mutate_in` :return: A :class:`~.OperationResult` :raise: :cb_exc:`NotFoundError` if the document does not exist. and `create` was not specified .. Initialize a map and add a value cb.upsert('a_map', {}) cb.map_add('a_map', 'some_key', 'some_value') cb.map_get('a_map', 'some_key').value # => 'some_value' cb.get('a_map').value # => {'some_key': 'some_value'} """ op = SD.upsert(mapkey, value) sdres = self.mutate_in(key, op, **kwargs) return self._wrap_dsop(sdres)
[ "def", "map_add", "(", "self", ",", "key", ",", "mapkey", ",", "value", ",", "create", "=", "False", ",", "*", "*", "kwargs", ")", ":", "op", "=", "SD", ".", "upsert", "(", "mapkey", ",", "value", ")", "sdres", "=", "self", ".", "mutate_in", "(", "key", ",", "op", ",", "*", "*", "kwargs", ")", "return", "self", ".", "_wrap_dsop", "(", "sdres", ")" ]
41
0.001402
def _process_filters(cls, filters): """Takes a list of filters and returns JSON :Parameters: - `filters`: List of Filters, (key, val) tuples, or dicts Returns: List of JSON API filters """ data = [] # Filters should always be a list for f in filters: if isinstance(f, Filter): if f.filters: data.extend(cls._process_filters(f.filters)) elif isinstance(f, dict): key = list(f.keys())[0] val = f[key] if isinstance(val, dict): # pass val (a dict) as list # so that it gets processed properly filter_filters = cls._process_filters([val]) if len(filter_filters) == 1: filter_filters = filter_filters[0] data.append({key: filter_filters}) else: data.append({key: cls._process_filters(val)}) else: data.extend((f,)) return data
[ "def", "_process_filters", "(", "cls", ",", "filters", ")", ":", "data", "=", "[", "]", "# Filters should always be a list", "for", "f", "in", "filters", ":", "if", "isinstance", "(", "f", ",", "Filter", ")", ":", "if", "f", ".", "filters", ":", "data", ".", "extend", "(", "cls", ".", "_process_filters", "(", "f", ".", "filters", ")", ")", "elif", "isinstance", "(", "f", ",", "dict", ")", ":", "key", "=", "list", "(", "f", ".", "keys", "(", ")", ")", "[", "0", "]", "val", "=", "f", "[", "key", "]", "if", "isinstance", "(", "val", ",", "dict", ")", ":", "# pass val (a dict) as list", "# so that it gets processed properly", "filter_filters", "=", "cls", ".", "_process_filters", "(", "[", "val", "]", ")", "if", "len", "(", "filter_filters", ")", "==", "1", ":", "filter_filters", "=", "filter_filters", "[", "0", "]", "data", ".", "append", "(", "{", "key", ":", "filter_filters", "}", ")", "else", ":", "data", ".", "append", "(", "{", "key", ":", "cls", ".", "_process_filters", "(", "val", ")", "}", ")", "else", ":", "data", ".", "extend", "(", "(", "f", ",", ")", ")", "return", "data" ]
33.21875
0.001828
def poll(self, timeout=0.0): """Modified version of poll() from asyncore module""" if self.sock_map is None: Log.warning("Socket map is not registered to Gateway Looper") readable_lst = [] writable_lst = [] error_lst = [] if self.sock_map is not None: for fd, obj in self.sock_map.items(): is_r = obj.readable() is_w = obj.writable() if is_r: readable_lst.append(fd) if is_w and not obj.accepting: writable_lst.append(fd) if is_r or is_w: error_lst.append(fd) # Add wakeup fd readable_lst.append(self.pipe_r) Log.debug("Will select() with timeout: " + str(timeout) + ", with map: " + str(self.sock_map)) try: readable_lst, writable_lst, error_lst = \ select.select(readable_lst, writable_lst, error_lst, timeout) except select.error as err: Log.debug("Trivial error: " + str(err)) if err.args[0] != errno.EINTR: raise else: return Log.debug("Selected [r]: " + str(readable_lst) + " [w]: " + str(writable_lst) + " [e]: " + str(error_lst)) if self.pipe_r in readable_lst: Log.debug("Read from pipe") os.read(self.pipe_r, 1024) readable_lst.remove(self.pipe_r) if self.sock_map is not None: for fd in readable_lst: obj = self.sock_map.get(fd) if obj is None: continue asyncore.read(obj) for fd in writable_lst: obj = self.sock_map.get(fd) if obj is None: continue asyncore.write(obj) for fd in error_lst: obj = self.sock_map.get(fd) if obj is None: continue # pylint: disable=W0212 asyncore._exception(obj)
[ "def", "poll", "(", "self", ",", "timeout", "=", "0.0", ")", ":", "if", "self", ".", "sock_map", "is", "None", ":", "Log", ".", "warning", "(", "\"Socket map is not registered to Gateway Looper\"", ")", "readable_lst", "=", "[", "]", "writable_lst", "=", "[", "]", "error_lst", "=", "[", "]", "if", "self", ".", "sock_map", "is", "not", "None", ":", "for", "fd", ",", "obj", "in", "self", ".", "sock_map", ".", "items", "(", ")", ":", "is_r", "=", "obj", ".", "readable", "(", ")", "is_w", "=", "obj", ".", "writable", "(", ")", "if", "is_r", ":", "readable_lst", ".", "append", "(", "fd", ")", "if", "is_w", "and", "not", "obj", ".", "accepting", ":", "writable_lst", ".", "append", "(", "fd", ")", "if", "is_r", "or", "is_w", ":", "error_lst", ".", "append", "(", "fd", ")", "# Add wakeup fd", "readable_lst", ".", "append", "(", "self", ".", "pipe_r", ")", "Log", ".", "debug", "(", "\"Will select() with timeout: \"", "+", "str", "(", "timeout", ")", "+", "\", with map: \"", "+", "str", "(", "self", ".", "sock_map", ")", ")", "try", ":", "readable_lst", ",", "writable_lst", ",", "error_lst", "=", "select", ".", "select", "(", "readable_lst", ",", "writable_lst", ",", "error_lst", ",", "timeout", ")", "except", "select", ".", "error", "as", "err", ":", "Log", ".", "debug", "(", "\"Trivial error: \"", "+", "str", "(", "err", ")", ")", "if", "err", ".", "args", "[", "0", "]", "!=", "errno", ".", "EINTR", ":", "raise", "else", ":", "return", "Log", ".", "debug", "(", "\"Selected [r]: \"", "+", "str", "(", "readable_lst", ")", "+", "\" [w]: \"", "+", "str", "(", "writable_lst", ")", "+", "\" [e]: \"", "+", "str", "(", "error_lst", ")", ")", "if", "self", ".", "pipe_r", "in", "readable_lst", ":", "Log", ".", "debug", "(", "\"Read from pipe\"", ")", "os", ".", "read", "(", "self", ".", "pipe_r", ",", "1024", ")", "readable_lst", ".", "remove", "(", "self", ".", "pipe_r", ")", "if", "self", ".", "sock_map", "is", "not", "None", ":", "for", "fd", "in", "readable_lst", ":", "obj", "=", "self", ".", "sock_map", ".", "get", "(", "fd", ")", "if", "obj", "is", "None", ":", "continue", "asyncore", ".", "read", "(", "obj", ")", "for", "fd", "in", "writable_lst", ":", "obj", "=", "self", ".", "sock_map", ".", "get", "(", "fd", ")", "if", "obj", "is", "None", ":", "continue", "asyncore", ".", "write", "(", "obj", ")", "for", "fd", "in", "error_lst", ":", "obj", "=", "self", ".", "sock_map", ".", "get", "(", "fd", ")", "if", "obj", "is", "None", ":", "continue", "# pylint: disable=W0212", "asyncore", ".", "_exception", "(", "obj", ")" ]
28.779661
0.01139
def get_detection_results(url, timeout, metadata=False, save_har=False): """ Return results from detector. This function prepares the environment loading the plugins, getting the response and passing it to the detector. In case of errors, it raises exceptions to be handled externally. """ plugins = load_plugins() if not plugins: raise NoPluginsError('No plugins found') logger.debug('[+] Starting detection with %(n)d plugins', {'n': len(plugins)}) response = get_response(url, plugins, timeout) # Save HAR if save_har: fd, path = tempfile.mkstemp(suffix='.har') logger.info(f'Saving HAR file to {path}') with open(fd, 'w') as f: json.dump(response['har'], f) det = Detector(response, plugins, url) softwares = det.get_results(metadata=metadata) output = { 'url': url, 'softwares': softwares, } return output
[ "def", "get_detection_results", "(", "url", ",", "timeout", ",", "metadata", "=", "False", ",", "save_har", "=", "False", ")", ":", "plugins", "=", "load_plugins", "(", ")", "if", "not", "plugins", ":", "raise", "NoPluginsError", "(", "'No plugins found'", ")", "logger", ".", "debug", "(", "'[+] Starting detection with %(n)d plugins'", ",", "{", "'n'", ":", "len", "(", "plugins", ")", "}", ")", "response", "=", "get_response", "(", "url", ",", "plugins", ",", "timeout", ")", "# Save HAR", "if", "save_har", ":", "fd", ",", "path", "=", "tempfile", ".", "mkstemp", "(", "suffix", "=", "'.har'", ")", "logger", ".", "info", "(", "f'Saving HAR file to {path}'", ")", "with", "open", "(", "fd", ",", "'w'", ")", "as", "f", ":", "json", ".", "dump", "(", "response", "[", "'har'", "]", ",", "f", ")", "det", "=", "Detector", "(", "response", ",", "plugins", ",", "url", ")", "softwares", "=", "det", ".", "get_results", "(", "metadata", "=", "metadata", ")", "output", "=", "{", "'url'", ":", "url", ",", "'softwares'", ":", "softwares", ",", "}", "return", "output" ]
26.794118
0.002119
def Nu_cylinder_Whitaker(Re, Pr, mu=None, muw=None): r'''Calculates Nusselt number for crossflow across a single tube as shown in [1]_ at a specified `Re` and `Pr`, both evaluated at the free stream temperature. Recommends a viscosity exponent correction of 0.25, which is applied only if provided. Also shown in [2]_. .. math:: Nu_D = (0.4 Re_D^{0.5} + 0.06Re_D^{2/3})Pr^{0.4} \left(\frac{\mu}{\mu_w}\right)^{0.25} Parameters ---------- Re : float Reynolds number with respect to cylinder diameter, [-] Pr : float Prandtl number at free stream temperature, [-] mu : float, optional Viscosity of fluid at the free stream temperature [Pa*s] muw : float, optional Viscosity of fluid at the wall temperature [Pa*s] Returns ------- Nu : float Nusselt number with respect to cylinder diameter, [-] Notes ----- Developed considering data from 1 to 1E5 Re, 0.67 to 300 Pr, and range of viscosity ratios from 0.25 to 5.2. Found experimental data to generally agree with it within 25%. Examples -------- >>> Nu_cylinder_Whitaker(6071, 0.7) 45.94527461589126 References ---------- .. [1] Whitaker, Stephen. "Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles." AIChE Journal 18, no. 2 (March 1, 1972): 361-371. doi:10.1002/aic.690180219. .. [2] Sanitjai, S., and R. J. Goldstein. "Forced Convection Heat Transfer from a Circular Cylinder in Crossflow to Air and Liquids." International Journal of Heat and Mass Transfer 47, no. 22 (October 2004): 4795-4805. doi:10.1016/j.ijheatmasstransfer.2004.05.012. ''' Nu = (0.4*Re**0.5 + 0.06*Re**(2/3.))*Pr**0.3 if mu and muw: Nu *= (mu/muw)**0.25 return Nu
[ "def", "Nu_cylinder_Whitaker", "(", "Re", ",", "Pr", ",", "mu", "=", "None", ",", "muw", "=", "None", ")", ":", "Nu", "=", "(", "0.4", "*", "Re", "**", "0.5", "+", "0.06", "*", "Re", "**", "(", "2", "/", "3.", ")", ")", "*", "Pr", "**", "0.3", "if", "mu", "and", "muw", ":", "Nu", "*=", "(", "mu", "/", "muw", ")", "**", "0.25", "return", "Nu" ]
36.211538
0.000517
def handle(self, cycle_delay=0.1): """ Call this method to spend about ``cycle_delay`` seconds processing requests in the pcaspy server. Under load, for example when running ``caget`` at a high frequency, the actual time spent in the method may be much shorter. This effect is not corrected for. :param cycle_delay: Approximate time to be spent processing requests in pcaspy server. """ if self._server is not None: self._server.process(cycle_delay) self._driver.process_pv_updates()
[ "def", "handle", "(", "self", ",", "cycle_delay", "=", "0.1", ")", ":", "if", "self", ".", "_server", "is", "not", "None", ":", "self", ".", "_server", ".", "process", "(", "cycle_delay", ")", "self", ".", "_driver", ".", "process_pv_updates", "(", ")" ]
46.75
0.008741
def to_pypsa(network, mode, timesteps): """ Translate graph based grid representation to PyPSA Network For details from a user perspective see API documentation of :meth:`~.grid.network.EDisGo.analyze` of the API class :class:`~.grid.network.EDisGo`. Translating eDisGo's grid topology to PyPSA representation is structured into translating the topology and adding time series for components of the grid. In both cases translation of MV grid only (`mode='mv'`), LV grid only (`mode='lv'`), MV and LV (`mode=None`) share some code. The code is organized as follows: * Medium-voltage only (`mode='mv'`): All medium-voltage grid components are exported by :func:`mv_to_pypsa` including the LV station. LV grid load and generation is considered using :func:`add_aggregated_lv_components`. Time series are collected by `_pypsa_load_timeseries` (as example for loads, generators and buses) specifying `mode='mv'`). Timeseries for aggregated load/generation at substations are determined individually. * Low-voltage only (`mode='lv'`): LV grid topology including the MV-LV transformer is exported. The slack is defind at primary side of the MV-LV transformer. * Both level MV+LV (`mode=None`): The entire grid topology is translated to PyPSA in order to perform a complete power flow analysis in both levels together. First, both grid levels are translated seperately using :func:`mv_to_pypsa` and :func:`lv_to_pypsa`. Those are merge by :func:`combine_mv_and_lv`. Time series are obtained at once for both grid levels. This PyPSA interface is aware of translation errors and performs so checks on integrity of data converted to PyPSA grid representation * Sub-graphs/ Sub-networks: It is ensured the grid has no islanded parts * Completeness of time series: It is ensured each component has a time series * Buses available: Each component (load, generator, line, transformer) is connected to a bus. The PyPSA representation is check for completeness of buses. * Duplicate labels in components DataFrames and components' time series DataFrames Parameters ---------- network : :class:`~.grid.network.Network` eDisGo grid container mode : str Determines grid levels that are translated to `PyPSA grid representation <https://www.pypsa.org/doc/components.html#network>`_. Specify * None to export MV and LV grid levels. None is the default. * ('mv' to export MV grid level only. This includes cumulative load and generation from underlying LV grid aggregated at respective LV station. This option is implemented, though the rest of edisgo does not handle it yet.) * ('lv' to export LV grid level only. This option is not yet implemented) timesteps : :pandas:`pandas.DatetimeIndex<datetimeindex>` or \ :pandas:`pandas.Timestamp<timestamp>` Timesteps specifies which time steps to export to pypsa representation and use in power flow analysis. Returns ------- :pypsa:`pypsa.Network<network>` The `PyPSA network <https://www.pypsa.org/doc/components.html#network>`_ container. """ # check if timesteps is array-like, otherwise convert to list (necessary # to obtain a dataframe when using .loc in time series functions) if not hasattr(timesteps, "__len__"): timesteps = [timesteps] # get topology and time series data if mode is None: mv_components = mv_to_pypsa(network) lv_components = lv_to_pypsa(network) components = combine_mv_and_lv(mv_components, lv_components) if list(components['Load'].index.values): timeseries_load_p, timeseries_load_q = _pypsa_load_timeseries( network, mode=mode, timesteps=timesteps) if len(list(components['Generator'].index.values)) > 1: timeseries_gen_p, timeseries_gen_q = _pypsa_generator_timeseries( network, mode=mode, timesteps=timesteps) if list(components['Bus'].index.values): timeseries_bus_v_set = _pypsa_bus_timeseries( network, components['Bus'].index.tolist(), timesteps=timesteps) if len(list(components['StorageUnit'].index.values)) > 0: timeseries_storage_p, timeseries_storage_q = \ _pypsa_storage_timeseries( network, mode=mode, timesteps=timesteps) elif mode is 'mv': # the pypsa export works but NotImplementedError is raised since the # rest of edisgo (handling of results from pfa, grid expansion, etc.) # does not yet work raise NotImplementedError mv_components = mv_to_pypsa(network) components = add_aggregated_lv_components(network, mv_components) if list(components['Load'].index.values): timeseries_load_p, timeseries_load_q = _pypsa_load_timeseries( network, mode=mode, timesteps=timesteps) if len(list(components['Generator'].index.values)) > 1: timeseries_gen_p, timeseries_gen_q = _pypsa_generator_timeseries( network, mode=mode, timesteps=timesteps) if list(components['Bus'].index.values): timeseries_bus_v_set = _pypsa_bus_timeseries( network, components['Bus'].index.tolist(), timesteps=timesteps) if len(list(components['StorageUnit'].index.values)) > 0: timeseries_storage_p, timeseries_storage_q = \ _pypsa_storage_timeseries( network, mode=mode, timesteps=timesteps) elif mode is 'lv': raise NotImplementedError #lv_to_pypsa(network) else: raise ValueError("Provide proper mode or leave it empty to export " "entire grid topology.") # check topology _check_topology(components) # create power flow problem pypsa_network = PyPSANetwork() pypsa_network.edisgo_mode = mode pypsa_network.set_snapshots(timesteps) # import grid topology to PyPSA network # buses are created first to avoid warnings pypsa_network.import_components_from_dataframe(components['Bus'], 'Bus') for k, comps in components.items(): if k is not 'Bus' and not comps.empty: pypsa_network.import_components_from_dataframe(comps, k) # import time series to PyPSA network if len(list(components['Generator'].index.values)) > 1: import_series_from_dataframe(pypsa_network, timeseries_gen_p, 'Generator', 'p_set') import_series_from_dataframe(pypsa_network, timeseries_gen_q, 'Generator', 'q_set') if list(components['Load'].index.values): import_series_from_dataframe(pypsa_network, timeseries_load_p, 'Load', 'p_set') import_series_from_dataframe(pypsa_network, timeseries_load_q, 'Load', 'q_set') if list(components['Bus'].index.values): import_series_from_dataframe(pypsa_network, timeseries_bus_v_set, 'Bus', 'v_mag_pu_set') if len(list(components['StorageUnit'].index.values)) > 0: import_series_from_dataframe(pypsa_network, timeseries_storage_p, 'StorageUnit', 'p_set') import_series_from_dataframe(pypsa_network, timeseries_storage_q, 'StorageUnit', 'q_set') _check_integrity_of_pypsa(pypsa_network) return pypsa_network
[ "def", "to_pypsa", "(", "network", ",", "mode", ",", "timesteps", ")", ":", "# check if timesteps is array-like, otherwise convert to list (necessary", "# to obtain a dataframe when using .loc in time series functions)", "if", "not", "hasattr", "(", "timesteps", ",", "\"__len__\"", ")", ":", "timesteps", "=", "[", "timesteps", "]", "# get topology and time series data", "if", "mode", "is", "None", ":", "mv_components", "=", "mv_to_pypsa", "(", "network", ")", "lv_components", "=", "lv_to_pypsa", "(", "network", ")", "components", "=", "combine_mv_and_lv", "(", "mv_components", ",", "lv_components", ")", "if", "list", "(", "components", "[", "'Load'", "]", ".", "index", ".", "values", ")", ":", "timeseries_load_p", ",", "timeseries_load_q", "=", "_pypsa_load_timeseries", "(", "network", ",", "mode", "=", "mode", ",", "timesteps", "=", "timesteps", ")", "if", "len", "(", "list", "(", "components", "[", "'Generator'", "]", ".", "index", ".", "values", ")", ")", ">", "1", ":", "timeseries_gen_p", ",", "timeseries_gen_q", "=", "_pypsa_generator_timeseries", "(", "network", ",", "mode", "=", "mode", ",", "timesteps", "=", "timesteps", ")", "if", "list", "(", "components", "[", "'Bus'", "]", ".", "index", ".", "values", ")", ":", "timeseries_bus_v_set", "=", "_pypsa_bus_timeseries", "(", "network", ",", "components", "[", "'Bus'", "]", ".", "index", ".", "tolist", "(", ")", ",", "timesteps", "=", "timesteps", ")", "if", "len", "(", "list", "(", "components", "[", "'StorageUnit'", "]", ".", "index", ".", "values", ")", ")", ">", "0", ":", "timeseries_storage_p", ",", "timeseries_storage_q", "=", "_pypsa_storage_timeseries", "(", "network", ",", "mode", "=", "mode", ",", "timesteps", "=", "timesteps", ")", "elif", "mode", "is", "'mv'", ":", "# the pypsa export works but NotImplementedError is raised since the", "# rest of edisgo (handling of results from pfa, grid expansion, etc.)", "# does not yet work", "raise", "NotImplementedError", "mv_components", "=", "mv_to_pypsa", "(", "network", ")", "components", "=", "add_aggregated_lv_components", "(", "network", ",", "mv_components", ")", "if", "list", "(", "components", "[", "'Load'", "]", ".", "index", ".", "values", ")", ":", "timeseries_load_p", ",", "timeseries_load_q", "=", "_pypsa_load_timeseries", "(", "network", ",", "mode", "=", "mode", ",", "timesteps", "=", "timesteps", ")", "if", "len", "(", "list", "(", "components", "[", "'Generator'", "]", ".", "index", ".", "values", ")", ")", ">", "1", ":", "timeseries_gen_p", ",", "timeseries_gen_q", "=", "_pypsa_generator_timeseries", "(", "network", ",", "mode", "=", "mode", ",", "timesteps", "=", "timesteps", ")", "if", "list", "(", "components", "[", "'Bus'", "]", ".", "index", ".", "values", ")", ":", "timeseries_bus_v_set", "=", "_pypsa_bus_timeseries", "(", "network", ",", "components", "[", "'Bus'", "]", ".", "index", ".", "tolist", "(", ")", ",", "timesteps", "=", "timesteps", ")", "if", "len", "(", "list", "(", "components", "[", "'StorageUnit'", "]", ".", "index", ".", "values", ")", ")", ">", "0", ":", "timeseries_storage_p", ",", "timeseries_storage_q", "=", "_pypsa_storage_timeseries", "(", "network", ",", "mode", "=", "mode", ",", "timesteps", "=", "timesteps", ")", "elif", "mode", "is", "'lv'", ":", "raise", "NotImplementedError", "#lv_to_pypsa(network)", "else", ":", "raise", "ValueError", "(", "\"Provide proper mode or leave it empty to export \"", "\"entire grid topology.\"", ")", "# check topology", "_check_topology", "(", "components", ")", "# create power flow problem", "pypsa_network", "=", "PyPSANetwork", "(", ")", "pypsa_network", ".", "edisgo_mode", "=", "mode", "pypsa_network", ".", "set_snapshots", "(", "timesteps", ")", "# import grid topology to PyPSA network", "# buses are created first to avoid warnings", "pypsa_network", ".", "import_components_from_dataframe", "(", "components", "[", "'Bus'", "]", ",", "'Bus'", ")", "for", "k", ",", "comps", "in", "components", ".", "items", "(", ")", ":", "if", "k", "is", "not", "'Bus'", "and", "not", "comps", ".", "empty", ":", "pypsa_network", ".", "import_components_from_dataframe", "(", "comps", ",", "k", ")", "# import time series to PyPSA network", "if", "len", "(", "list", "(", "components", "[", "'Generator'", "]", ".", "index", ".", "values", ")", ")", ">", "1", ":", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_gen_p", ",", "'Generator'", ",", "'p_set'", ")", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_gen_q", ",", "'Generator'", ",", "'q_set'", ")", "if", "list", "(", "components", "[", "'Load'", "]", ".", "index", ".", "values", ")", ":", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_load_p", ",", "'Load'", ",", "'p_set'", ")", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_load_q", ",", "'Load'", ",", "'q_set'", ")", "if", "list", "(", "components", "[", "'Bus'", "]", ".", "index", ".", "values", ")", ":", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_bus_v_set", ",", "'Bus'", ",", "'v_mag_pu_set'", ")", "if", "len", "(", "list", "(", "components", "[", "'StorageUnit'", "]", ".", "index", ".", "values", ")", ")", ">", "0", ":", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_storage_p", ",", "'StorageUnit'", ",", "'p_set'", ")", "import_series_from_dataframe", "(", "pypsa_network", ",", "timeseries_storage_q", ",", "'StorageUnit'", ",", "'q_set'", ")", "_check_integrity_of_pypsa", "(", "pypsa_network", ")", "return", "pypsa_network" ]
43.710983
0.000388
def ratioTerminatorToStar(H_p, R_p, R_s): # TODO add into planet class r"""Calculates the ratio of the terminator to the star assuming 5 scale heights large. If you dont know all of the input try :py:func:`calcRatioTerminatorToStar` .. math:: \Delta F = \frac{10 H R_p + 25 H^2}{R_\star^2} Where :math:`\Delta F` is the ration of the terminator to the star, H scale height planet atmosphere, :math:`R_p` radius of the planet, :math:`R_s` radius of the star :param H_p: :param R_p: :param R_s: :return: ratio of the terminator to the star """ deltaF = ((10 * H_p * R_p) + (25 * H_p**2)) / (R_s**2) return deltaF.simplified
[ "def", "ratioTerminatorToStar", "(", "H_p", ",", "R_p", ",", "R_s", ")", ":", "# TODO add into planet class", "deltaF", "=", "(", "(", "10", "*", "H_p", "*", "R_p", ")", "+", "(", "25", "*", "H_p", "**", "2", ")", ")", "/", "(", "R_s", "**", "2", ")", "return", "deltaF", ".", "simplified" ]
33.55
0.001449
def _analyzeDontMeasure(self, chunkSize, willMeasureLater, *sinks): """ Figure out the best diffs to use to reach all our required volumes. """ nodes = [None] height = 1 def sortKey(node): if node is None: return None return (node.intermediate, self._totalSize(node)) while len(nodes) > 0: logger.debug("Analyzing %d nodes for height %d...", len(nodes), height) nodes.sort(key=sortKey) for fromNode in nodes: if self._height(fromNode) >= height: continue if fromNode is not None and fromNode.diffSize is None: continue fromVol = fromNode.volume if fromNode else None logger.debug("Following edges from %s", fromVol) for sink in sinks: # logger.debug( # "Listing edges in %s", # sink # ) for edge in sink.getEdges(fromVol): toVol = edge.toVol # logger.debug("Edge: %s", edge) # Skip any edges already in the destination if sink != self.dest and self.dest.hasEdge(edge): continue if toVol in self.nodes: toNode = self.nodes[toVol] # Don't transfer any edges we won't need in the destination # elif sink != self.dest: # logger.debug("Won't transfer unnecessary %s", edge) # continue else: toNode = _Node(toVol, True) self.nodes[toVol] = toNode logger.debug("Considering %s", edge) edgeSize = edge.size if edge.sizeIsEstimated: if willMeasureLater: # Slight preference for accurate sizes edgeSize *= 1.2 else: # Large preference for accurate sizes edgeSize *= 2 newCost = self._cost(sink, edgeSize, fromNode, height) if toNode.diff is None: oldCost = None else: oldCost = self._cost( toNode.sink, toNode.diffSize, self._getNode(toNode.previous), self._height(toNode) ) # Don't use a more-expensive path if oldCost is not None and oldCost <= newCost: continue # Don't create circular paths if self._wouldLoop(fromVol, toVol): # logger.debug("Ignoring looping edge: %s", toVol.display(sink)) continue # if measureSize and sink != self.dest and edge.sizeIsEstimated: # sink.measureSize(edge, chunkSize) # newCost = self._cost(sink, edge.size, fromSize, height) # if oldCost is not None and oldCost <= newCost: # continue logger.debug( "Replacing edge (%s -> %s cost)\n%s", humanize(oldCost), humanize(newCost), toNode.display(sink) ) # logger.debug("Cost elements: %s", dict( # sink=str(sink), # edgeSize=humanize(edgeSize), # fromSize=humanize(fromSize), # height=height, # )) toNode.diff = edge nodes = [node for node in self.nodes.values() if self._height(node) == height] height += 1 self._prune() for node in self.nodes.values(): node.height = self._height(node) if node.diff is None: logger.error( "No source diffs for %s", node.volume.display(sinks[-1], detail="line"), )
[ "def", "_analyzeDontMeasure", "(", "self", ",", "chunkSize", ",", "willMeasureLater", ",", "*", "sinks", ")", ":", "nodes", "=", "[", "None", "]", "height", "=", "1", "def", "sortKey", "(", "node", ")", ":", "if", "node", "is", "None", ":", "return", "None", "return", "(", "node", ".", "intermediate", ",", "self", ".", "_totalSize", "(", "node", ")", ")", "while", "len", "(", "nodes", ")", ">", "0", ":", "logger", ".", "debug", "(", "\"Analyzing %d nodes for height %d...\"", ",", "len", "(", "nodes", ")", ",", "height", ")", "nodes", ".", "sort", "(", "key", "=", "sortKey", ")", "for", "fromNode", "in", "nodes", ":", "if", "self", ".", "_height", "(", "fromNode", ")", ">=", "height", ":", "continue", "if", "fromNode", "is", "not", "None", "and", "fromNode", ".", "diffSize", "is", "None", ":", "continue", "fromVol", "=", "fromNode", ".", "volume", "if", "fromNode", "else", "None", "logger", ".", "debug", "(", "\"Following edges from %s\"", ",", "fromVol", ")", "for", "sink", "in", "sinks", ":", "# logger.debug(", "# \"Listing edges in %s\",", "# sink", "# )", "for", "edge", "in", "sink", ".", "getEdges", "(", "fromVol", ")", ":", "toVol", "=", "edge", ".", "toVol", "# logger.debug(\"Edge: %s\", edge)", "# Skip any edges already in the destination", "if", "sink", "!=", "self", ".", "dest", "and", "self", ".", "dest", ".", "hasEdge", "(", "edge", ")", ":", "continue", "if", "toVol", "in", "self", ".", "nodes", ":", "toNode", "=", "self", ".", "nodes", "[", "toVol", "]", "# Don't transfer any edges we won't need in the destination", "# elif sink != self.dest:", "# logger.debug(\"Won't transfer unnecessary %s\", edge)", "# continue", "else", ":", "toNode", "=", "_Node", "(", "toVol", ",", "True", ")", "self", ".", "nodes", "[", "toVol", "]", "=", "toNode", "logger", ".", "debug", "(", "\"Considering %s\"", ",", "edge", ")", "edgeSize", "=", "edge", ".", "size", "if", "edge", ".", "sizeIsEstimated", ":", "if", "willMeasureLater", ":", "# Slight preference for accurate sizes", "edgeSize", "*=", "1.2", "else", ":", "# Large preference for accurate sizes", "edgeSize", "*=", "2", "newCost", "=", "self", ".", "_cost", "(", "sink", ",", "edgeSize", ",", "fromNode", ",", "height", ")", "if", "toNode", ".", "diff", "is", "None", ":", "oldCost", "=", "None", "else", ":", "oldCost", "=", "self", ".", "_cost", "(", "toNode", ".", "sink", ",", "toNode", ".", "diffSize", ",", "self", ".", "_getNode", "(", "toNode", ".", "previous", ")", ",", "self", ".", "_height", "(", "toNode", ")", ")", "# Don't use a more-expensive path", "if", "oldCost", "is", "not", "None", "and", "oldCost", "<=", "newCost", ":", "continue", "# Don't create circular paths", "if", "self", ".", "_wouldLoop", "(", "fromVol", ",", "toVol", ")", ":", "# logger.debug(\"Ignoring looping edge: %s\", toVol.display(sink))", "continue", "# if measureSize and sink != self.dest and edge.sizeIsEstimated:", "# sink.measureSize(edge, chunkSize)", "# newCost = self._cost(sink, edge.size, fromSize, height)", "# if oldCost is not None and oldCost <= newCost:", "# continue", "logger", ".", "debug", "(", "\"Replacing edge (%s -> %s cost)\\n%s\"", ",", "humanize", "(", "oldCost", ")", ",", "humanize", "(", "newCost", ")", ",", "toNode", ".", "display", "(", "sink", ")", ")", "# logger.debug(\"Cost elements: %s\", dict(", "# sink=str(sink),", "# edgeSize=humanize(edgeSize),", "# fromSize=humanize(fromSize),", "# height=height,", "# ))", "toNode", ".", "diff", "=", "edge", "nodes", "=", "[", "node", "for", "node", "in", "self", ".", "nodes", ".", "values", "(", ")", "if", "self", ".", "_height", "(", "node", ")", "==", "height", "]", "height", "+=", "1", "self", ".", "_prune", "(", ")", "for", "node", "in", "self", ".", "nodes", ".", "values", "(", ")", ":", "node", ".", "height", "=", "self", ".", "_height", "(", "node", ")", "if", "node", ".", "diff", "is", "None", ":", "logger", ".", "error", "(", "\"No source diffs for %s\"", ",", "node", ".", "volume", ".", "display", "(", "sinks", "[", "-", "1", "]", ",", "detail", "=", "\"line\"", ")", ",", ")" ]
39.008621
0.002155
def get_hash(self): """ Get the HMAC-SHA1 that has been calculated this far. """ if not self.executed: raise pyhsm.exception.YHSM_Error("HMAC-SHA1 hash not available, before execute().") return self.result.hash_result
[ "def", "get_hash", "(", "self", ")", ":", "if", "not", "self", ".", "executed", ":", "raise", "pyhsm", ".", "exception", ".", "YHSM_Error", "(", "\"HMAC-SHA1 hash not available, before execute().\"", ")", "return", "self", ".", "result", ".", "hash_result" ]
37.571429
0.011152
def coerce(value): """ Takes a number (float, int) or a two-valued integer and returns the [low, high] in the standard interval form """ is_number = lambda x: isinstance(x, (int, float, complex)) #is x an instance of those things if isinstance(value, IntervalCell) or issubclass(value.__class__,IntervalCell): #if intervalcell or subclass, return the subclass return value elif is_number(value): return IntervalCell(value, value) elif hasattr(value, 'low') and hasattr(value, 'high'): # duck type assert value.low <= value.high, "Invalid low/high in %s" % str(value) return value elif isinstance(value, (list, tuple)) and all(map(is_number, value)): if len(value) == 1: low, high = value[0], value[0] elif len(value) == 2: low, high = value else: low, high = min(value), max(value) if high < low: raise Contradiction("Low must be lte High") return IntervalCell(low, high) else: raise Exception("Don't know how to coerce %s" % (type(value)))
[ "def", "coerce", "(", "value", ")", ":", "is_number", "=", "lambda", "x", ":", "isinstance", "(", "x", ",", "(", "int", ",", "float", ",", "complex", ")", ")", "#is x an instance of those things", "if", "isinstance", "(", "value", ",", "IntervalCell", ")", "or", "issubclass", "(", "value", ".", "__class__", ",", "IntervalCell", ")", ":", "#if intervalcell or subclass, return the subclass", "return", "value", "elif", "is_number", "(", "value", ")", ":", "return", "IntervalCell", "(", "value", ",", "value", ")", "elif", "hasattr", "(", "value", ",", "'low'", ")", "and", "hasattr", "(", "value", ",", "'high'", ")", ":", "# duck type", "assert", "value", ".", "low", "<=", "value", ".", "high", ",", "\"Invalid low/high in %s\"", "%", "str", "(", "value", ")", "return", "value", "elif", "isinstance", "(", "value", ",", "(", "list", ",", "tuple", ")", ")", "and", "all", "(", "map", "(", "is_number", ",", "value", ")", ")", ":", "if", "len", "(", "value", ")", "==", "1", ":", "low", ",", "high", "=", "value", "[", "0", "]", ",", "value", "[", "0", "]", "elif", "len", "(", "value", ")", "==", "2", ":", "low", ",", "high", "=", "value", "else", ":", "low", ",", "high", "=", "min", "(", "value", ")", ",", "max", "(", "value", ")", "if", "high", "<", "low", ":", "raise", "Contradiction", "(", "\"Low must be lte High\"", ")", "return", "IntervalCell", "(", "low", ",", "high", ")", "else", ":", "raise", "Exception", "(", "\"Don't know how to coerce %s\"", "%", "(", "type", "(", "value", ")", ")", ")" ]
44.592593
0.009756
def main(): """ Primary Tarbell command dispatch. """ command = Command.lookup(args.get(0)) if len(args) == 0 or args.contains(('-h', '--help', 'help')): display_info(args) sys.exit(1) elif args.contains(('-v', '--version')): display_version() sys.exit(1) elif command: arg = args.get(0) args.remove(arg) command.__call__(command, args) sys.exit() else: show_error(colored.red('Error! Unknown command \'{0}\'.\n' .format(args.get(0)))) display_info(args) sys.exit(1)
[ "def", "main", "(", ")", ":", "command", "=", "Command", ".", "lookup", "(", "args", ".", "get", "(", "0", ")", ")", "if", "len", "(", "args", ")", "==", "0", "or", "args", ".", "contains", "(", "(", "'-h'", ",", "'--help'", ",", "'help'", ")", ")", ":", "display_info", "(", "args", ")", "sys", ".", "exit", "(", "1", ")", "elif", "args", ".", "contains", "(", "(", "'-v'", ",", "'--version'", ")", ")", ":", "display_version", "(", ")", "sys", ".", "exit", "(", "1", ")", "elif", "command", ":", "arg", "=", "args", ".", "get", "(", "0", ")", "args", ".", "remove", "(", "arg", ")", "command", ".", "__call__", "(", "command", ",", "args", ")", "sys", ".", "exit", "(", ")", "else", ":", "show_error", "(", "colored", ".", "red", "(", "'Error! Unknown command \\'{0}\\'.\\n'", ".", "format", "(", "args", ".", "get", "(", "0", ")", ")", ")", ")", "display_info", "(", "args", ")", "sys", ".", "exit", "(", "1", ")" ]
23.88
0.00161
def savepysyn(self,wave,flux,fname,units=None): """ Cannot ever use the .writefits() method, because the array is frequently just sampled at the synphot waveset; plus, writefits is smart and does things like tapering.""" if units is None: ytype='throughput' units=' ' else: ytype='flux' col1=pyfits.Column(name='wavelength',format='D',array=wave) col2=pyfits.Column(name=ytype,format='D',array=flux) tbhdu=pyfits.BinTableHDU.from_columns(pyfits.ColDefs([col1,col2])) tbhdu.header.update('tunit1','angstrom') tbhdu.header.update('tunit2',units) tbhdu.writeto(fname.replace('.fits','_pysyn.fits'))
[ "def", "savepysyn", "(", "self", ",", "wave", ",", "flux", ",", "fname", ",", "units", "=", "None", ")", ":", "if", "units", "is", "None", ":", "ytype", "=", "'throughput'", "units", "=", "' '", "else", ":", "ytype", "=", "'flux'", "col1", "=", "pyfits", ".", "Column", "(", "name", "=", "'wavelength'", ",", "format", "=", "'D'", ",", "array", "=", "wave", ")", "col2", "=", "pyfits", ".", "Column", "(", "name", "=", "ytype", ",", "format", "=", "'D'", ",", "array", "=", "flux", ")", "tbhdu", "=", "pyfits", ".", "BinTableHDU", ".", "from_columns", "(", "pyfits", ".", "ColDefs", "(", "[", "col1", ",", "col2", "]", ")", ")", "tbhdu", ".", "header", ".", "update", "(", "'tunit1'", ",", "'angstrom'", ")", "tbhdu", ".", "header", ".", "update", "(", "'tunit2'", ",", "units", ")", "tbhdu", ".", "writeto", "(", "fname", ".", "replace", "(", "'.fits'", ",", "'_pysyn.fits'", ")", ")" ]
47
0.027816
def mkdtemp(suffix="", prefix=template, dir=None): """User-callable function to create and return a unique temporary directory. The return value is the pathname of the directory. Arguments are as for mkstemp, except that the 'text' argument is not accepted. The directory is readable, writable, and searchable only by the creating user. Caller is responsible for deleting the directory when done with it. """ if dir is None: dir = gettempdir() names = _get_candidate_names() for seq in range(TMP_MAX): name = next(names) file = _os.path.join(dir, prefix + name + suffix) try: _os.mkdir(file, 0o700) return file except FileExistsError: continue # try again raise FileExistsError(_errno.EEXIST, "No usable temporary directory name found")
[ "def", "mkdtemp", "(", "suffix", "=", "\"\"", ",", "prefix", "=", "template", ",", "dir", "=", "None", ")", ":", "if", "dir", "is", "None", ":", "dir", "=", "gettempdir", "(", ")", "names", "=", "_get_candidate_names", "(", ")", "for", "seq", "in", "range", "(", "TMP_MAX", ")", ":", "name", "=", "next", "(", "names", ")", "file", "=", "_os", ".", "path", ".", "join", "(", "dir", ",", "prefix", "+", "name", "+", "suffix", ")", "try", ":", "_os", ".", "mkdir", "(", "file", ",", "0o700", ")", "return", "file", "except", "FileExistsError", ":", "continue", "# try again", "raise", "FileExistsError", "(", "_errno", ".", "EEXIST", ",", "\"No usable temporary directory name found\"", ")" ]
29.965517
0.001115
def interpolate(self, factor, minGlyph, maxGlyph, round=True, suppressError=True): """ Interpolate the contents of this glyph at location ``factor`` in a linear interpolation between ``minGlyph`` and ``maxGlyph``. >>> glyph.interpolate(0.5, otherGlyph1, otherGlyph2) ``factor`` may be a :ref:`type-int-float` or a tuple containing two :ref:`type-int-float` values representing x and y factors. >>> glyph.interpolate((0.5, 1.0), otherGlyph1, otherGlyph2) ``minGlyph`` must be a :class:`BaseGlyph` and will be located at 0.0 in the interpolation range. ``maxGlyph`` must be a :class:`BaseGlyph` and will be located at 1.0 in the interpolation range. If ``round`` is ``True``, the contents of the glyph will be rounded to integers after the interpolation is performed. >>> glyph.interpolate(0.5, otherGlyph1, otherGlyph2, round=True) This method assumes that ``minGlyph`` and ``maxGlyph`` are completely compatible with each other for interpolation. If not, any errors encountered will raise a :class:`FontPartsError`. If ``suppressError`` is ``True``, no exception will be raised and errors will be silently ignored. """ factor = normalizers.normalizeInterpolationFactor(factor) if not isinstance(minGlyph, BaseGlyph): raise TypeError(("Interpolation to an instance of %r can not be " "performed from an instance of %r.") % (self.__class__.__name__, minGlyph.__class__.__name__)) if not isinstance(maxGlyph, BaseGlyph): raise TypeError(("Interpolation to an instance of %r can not be " "performed from an instance of %r.") % (self.__class__.__name__, maxGlyph.__class__.__name__)) round = normalizers.normalizeBoolean(round) suppressError = normalizers.normalizeBoolean(suppressError) self._interpolate(factor, minGlyph, maxGlyph, round=round, suppressError=suppressError)
[ "def", "interpolate", "(", "self", ",", "factor", ",", "minGlyph", ",", "maxGlyph", ",", "round", "=", "True", ",", "suppressError", "=", "True", ")", ":", "factor", "=", "normalizers", ".", "normalizeInterpolationFactor", "(", "factor", ")", "if", "not", "isinstance", "(", "minGlyph", ",", "BaseGlyph", ")", ":", "raise", "TypeError", "(", "(", "\"Interpolation to an instance of %r can not be \"", "\"performed from an instance of %r.\"", ")", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "minGlyph", ".", "__class__", ".", "__name__", ")", ")", "if", "not", "isinstance", "(", "maxGlyph", ",", "BaseGlyph", ")", ":", "raise", "TypeError", "(", "(", "\"Interpolation to an instance of %r can not be \"", "\"performed from an instance of %r.\"", ")", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "maxGlyph", ".", "__class__", ".", "__name__", ")", ")", "round", "=", "normalizers", ".", "normalizeBoolean", "(", "round", ")", "suppressError", "=", "normalizers", ".", "normalizeBoolean", "(", "suppressError", ")", "self", ".", "_interpolate", "(", "factor", ",", "minGlyph", ",", "maxGlyph", ",", "round", "=", "round", ",", "suppressError", "=", "suppressError", ")" ]
52.214286
0.001343
def dfa_word_acceptance(dfa: dict, word: list) -> bool: """ Checks if a given **word** is accepted by a DFA, returning True/false. The word w is accepted by a DFA if DFA has an accepting run on w. Since A is deterministic, :math:`w ∈ L(A)` if and only if :math:`ρ(s_0 , w) ∈ F` . :param dict dfa: input DFA; :param list word: list of actions ∈ dfa['alphabet']. :return: *(bool)*, True if the word is accepted, False in the other case. """ current_state = dfa['initial_state'] for action in word: if (current_state, action) in dfa['transitions']: current_state = dfa['transitions'][current_state, action] else: return False if current_state in dfa['accepting_states']: return True else: return False
[ "def", "dfa_word_acceptance", "(", "dfa", ":", "dict", ",", "word", ":", "list", ")", "->", "bool", ":", "current_state", "=", "dfa", "[", "'initial_state'", "]", "for", "action", "in", "word", ":", "if", "(", "current_state", ",", "action", ")", "in", "dfa", "[", "'transitions'", "]", ":", "current_state", "=", "dfa", "[", "'transitions'", "]", "[", "current_state", ",", "action", "]", "else", ":", "return", "False", "if", "current_state", "in", "dfa", "[", "'accepting_states'", "]", ":", "return", "True", "else", ":", "return", "False" ]
33.291667
0.001217
def inverse_lin_decay(max_step, min_value=0.01, step=None): """Inverse-decay linearly from 0.01 to 1.0 reached at max_step.""" if step is None: step = tf.train.get_global_step() if step is None: return 1.0 step = to_float(step) progress = tf.minimum(step / float(max_step), 1.0) return progress * (1.0 - min_value) + min_value
[ "def", "inverse_lin_decay", "(", "max_step", ",", "min_value", "=", "0.01", ",", "step", "=", "None", ")", ":", "if", "step", "is", "None", ":", "step", "=", "tf", ".", "train", ".", "get_global_step", "(", ")", "if", "step", "is", "None", ":", "return", "1.0", "step", "=", "to_float", "(", "step", ")", "progress", "=", "tf", ".", "minimum", "(", "step", "/", "float", "(", "max_step", ")", ",", "1.0", ")", "return", "progress", "*", "(", "1.0", "-", "min_value", ")", "+", "min_value" ]
37.555556
0.020231