|
import pandas as pd |
|
from bs4 import BeautifulSoup |
|
|
|
with open("sorted_data/books/positive.review") as file: |
|
soup_pos = BeautifulSoup(file, "lxml") |
|
|
|
texts_pos=[] |
|
for review in soup_pos.find_all("review"): |
|
texts_pos.append(review.review_text.text) |
|
|
|
books_pos = pd.DataFrame({"text":texts_pos, "label":1}) |
|
books_pos.text = books_pos.text.replace("^\n", "", regex=True) |
|
|
|
from sklearn.model_selection import train_test_split |
|
books_pos_train, books_pos_test = train_test_split(books_pos, train_size=800, random_state=41) |
|
|
|
|
|
|
|
with open("sorted_data/books/negative.review") as file: |
|
soup_neg = BeautifulSoup(file, "lxml") |
|
|
|
texts_neg=[] |
|
for review in soup_neg.find_all("review"): |
|
texts_neg.append(review.review_text.text) |
|
|
|
books_neg = pd.DataFrame({"text":texts_neg, "label":0}) |
|
books_neg.text = books_neg.text.replace("^\n", "", regex=True) |
|
|
|
books_neg_train, books_neg_test = train_test_split(books_neg, train_size=800) |
|
|
|
pd.concat([books_pos_train, books_neg_train]).to_csv("sorted_data/books/train.csv", index=False) |
|
pd.concat([books_pos_test, books_neg_test ]).to_csv("sorted_data/books/test.csv", index=False) |
|
|