|
import zipfile, glob, subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np |
|
from mega import Mega |
|
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" |
|
import threading |
|
from time import sleep |
|
from subprocess import Popen |
|
import faiss |
|
from random import shuffle |
|
import json, datetime, requests |
|
from gtts import gTTS |
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
tmp = os.path.join(now_dir, "TEMP") |
|
shutil.rmtree(tmp, ignore_errors=True) |
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) |
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) |
|
os.makedirs(tmp, exist_ok=True) |
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) |
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) |
|
os.environ["TEMP"] = tmp |
|
warnings.filterwarnings("ignore") |
|
torch.manual_seed(114514) |
|
from i18n import I18nAuto |
|
import ffmpeg |
|
|
|
|
|
i18n = I18nAuto() |
|
|
|
|
|
ngpu = torch.cuda.device_count() |
|
gpu_infos = [] |
|
mem = [] |
|
if (not torch.cuda.is_available()) or ngpu == 0: |
|
if_gpu_ok = False |
|
else: |
|
if_gpu_ok = False |
|
for i in range(ngpu): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
if ( |
|
"10" in gpu_name |
|
or "16" in gpu_name |
|
or "20" in gpu_name |
|
or "30" in gpu_name |
|
or "40" in gpu_name |
|
or "A2" in gpu_name.upper() |
|
or "A3" in gpu_name.upper() |
|
or "A4" in gpu_name.upper() |
|
or "P4" in gpu_name.upper() |
|
or "A50" in gpu_name.upper() |
|
or "A60" in gpu_name.upper() |
|
or "70" in gpu_name |
|
or "80" in gpu_name |
|
or "90" in gpu_name |
|
or "M4" in gpu_name.upper() |
|
or "T4" in gpu_name.upper() |
|
or "TITAN" in gpu_name.upper() |
|
): |
|
if_gpu_ok = True |
|
gpu_infos.append("%s\t%s" % (i, gpu_name)) |
|
mem.append( |
|
int( |
|
torch.cuda.get_device_properties(i).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
) |
|
if if_gpu_ok == True and len(gpu_infos) > 0: |
|
gpu_info = "\n".join(gpu_infos) |
|
default_batch_size = min(mem) // 2 |
|
else: |
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") |
|
default_batch_size = 1 |
|
gpus = "-".join([i[0] for i in gpu_infos]) |
|
|
|
from infer_pack.models import (SynthesizerTrnMs256NSFsid,SynthesizerTrnMs256NSFsid_nono,SynthesizerTrnMs768NSFsid,SynthesizerTrnMs768NSFsid_nono) |
|
|
|
import soundfile as sf |
|
from fairseq import checkpoint_utils |
|
import gradio as gr |
|
import logging |
|
from vc_infer_pipeline import VC |
|
from config import Config |
|
from infer_uvr5 import _audio_pre_, _audio_pre_new |
|
from my_utils import load_audio |
|
from train.process_ckpt import show_info, change_info, merge, extract_small_model |
|
|
|
config = Config() |
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
|
|
hubert_model = None |
|
|
|
def load_hubert(): |
|
global hubert_model |
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( |
|
["hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(config.device) |
|
if config.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
|
|
|
|
weight_root = "weights" |
|
weight_uvr5_root = "uvr5_weights" |
|
index_root = "logs" |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s/%s" % (root, name)) |
|
uvr5_names = [] |
|
for name in os.listdir(weight_uvr5_root): |
|
if name.endswith(".pth") or "onnx" in name: |
|
uvr5_names.append(name.replace(".pth", "")) |
|
|
|
|
|
def vc_single( |
|
sid, |
|
input_audio_path, |
|
f0_up_key, |
|
f0_file, |
|
f0_method, |
|
file_index, |
|
|
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
crepe_hop_length, |
|
root_location='./audios' |
|
): |
|
global tgt_sr, net_g, vc, hubert_model, version |
|
if input_audio_path is None: |
|
gr.Warning("You need to provide the path to an audio file") |
|
return "You need to provide the path to an audio file", None |
|
full_audio_path = root_location + '/' + input_audio_path |
|
if not os.path.exists(full_audio_path): |
|
gr.Warning(f"Could not find that file in audios/{input_audio_path}") |
|
return f"Could not find that file in audios/{input_audio_path}", None |
|
f0_up_key = int(f0_up_key) |
|
try: |
|
audio = load_audio(full_audio_path, 16000) |
|
audio_max = np.abs(audio).max() / 0.95 |
|
if audio_max > 1: |
|
audio /= audio_max |
|
times = [0, 0, 0] |
|
if hubert_model == None: |
|
load_hubert() |
|
if_f0 = cpt.get("f0", 1) |
|
file_index = ( |
|
( |
|
file_index.strip(" ") |
|
.strip('"') |
|
.strip("\n") |
|
.strip('"') |
|
.strip(" ") |
|
.replace("trained", "added") |
|
) |
|
) |
|
|
|
|
|
|
|
audio_opt = vc.pipeline( |
|
hubert_model, |
|
net_g, |
|
sid, |
|
audio, |
|
input_audio_path, |
|
times, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
|
|
index_rate, |
|
if_f0, |
|
filter_radius, |
|
tgt_sr, |
|
resample_sr, |
|
rms_mix_rate, |
|
version, |
|
protect, |
|
crepe_hop_length, |
|
f0_file=f0_file, |
|
) |
|
if resample_sr >= 16000 and tgt_sr != resample_sr: |
|
tgt_sr = resample_sr |
|
index_info = ( |
|
"Using index:%s." % file_index |
|
if os.path.exists(file_index) |
|
else "Index not used." |
|
) |
|
gr.Info('Success.') |
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( |
|
index_info, |
|
times[0], |
|
times[1], |
|
times[2], |
|
), (tgt_sr, audio_opt) |
|
except: |
|
info = traceback.format_exc() |
|
print(info) |
|
return info, (None, None) |
|
|
|
|
|
def vc_multi( |
|
sid, |
|
dir_path, |
|
opt_root, |
|
paths, |
|
f0_up_key, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
format1, |
|
crepe_hop_length, |
|
): |
|
try: |
|
dir_path = ( |
|
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
os.makedirs(opt_root, exist_ok=True) |
|
try: |
|
if dir_path != "": |
|
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] |
|
else: |
|
paths = [path.name for path in paths] |
|
except: |
|
traceback.print_exc() |
|
paths = [path.name for path in paths] |
|
infos = [] |
|
for path in paths: |
|
info, opt = vc_single( |
|
sid, |
|
path, |
|
f0_up_key, |
|
None, |
|
f0_method, |
|
file_index, |
|
file_index2, |
|
|
|
index_rate, |
|
filter_radius, |
|
resample_sr, |
|
rms_mix_rate, |
|
protect, |
|
crepe_hop_length |
|
) |
|
if "Success" in info: |
|
try: |
|
tgt_sr, audio_opt = opt |
|
if format1 in ["wav", "flac"]: |
|
sf.write( |
|
"%s/%s.%s" % (opt_root, os.path.basename(path), format1), |
|
audio_opt, |
|
tgt_sr, |
|
) |
|
else: |
|
path = "%s/%s.wav" % (opt_root, os.path.basename(path)) |
|
sf.write( |
|
path, |
|
audio_opt, |
|
tgt_sr, |
|
) |
|
if os.path.exists(path): |
|
os.system( |
|
"ffmpeg -i %s -vn %s -q:a 2 -y" |
|
% (path, path[:-4] + ".%s" % format1) |
|
) |
|
except: |
|
info += traceback.format_exc() |
|
infos.append("%s->%s" % (os.path.basename(path), info)) |
|
yield "\n".join(infos) |
|
yield "\n".join(infos) |
|
except: |
|
yield traceback.format_exc() |
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): |
|
infos = [] |
|
try: |
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
save_root_vocal = ( |
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
save_root_ins = ( |
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") |
|
) |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
pre_fun = MDXNetDereverb(15) |
|
else: |
|
func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new |
|
pre_fun = func( |
|
agg=int(agg), |
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), |
|
device=config.device, |
|
is_half=config.is_half, |
|
) |
|
if inp_root != "": |
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] |
|
else: |
|
paths = [path.name for path in paths] |
|
for path in paths: |
|
inp_path = os.path.join(inp_root, path) |
|
need_reformat = 1 |
|
done = 0 |
|
try: |
|
info = ffmpeg.probe(inp_path, cmd="ffprobe") |
|
if ( |
|
info["streams"][0]["channels"] == 2 |
|
and info["streams"][0]["sample_rate"] == "44100" |
|
): |
|
need_reformat = 0 |
|
pre_fun._path_audio_( |
|
inp_path, save_root_ins, save_root_vocal, format0 |
|
) |
|
done = 1 |
|
except: |
|
need_reformat = 1 |
|
traceback.print_exc() |
|
if need_reformat == 1: |
|
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path)) |
|
os.system( |
|
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" |
|
% (inp_path, tmp_path) |
|
) |
|
inp_path = tmp_path |
|
try: |
|
if done == 0: |
|
pre_fun._path_audio_( |
|
inp_path, save_root_ins, save_root_vocal, format0 |
|
) |
|
infos.append("%s->Success" % (os.path.basename(inp_path))) |
|
yield "\n".join(infos) |
|
except: |
|
infos.append( |
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) |
|
) |
|
yield "\n".join(infos) |
|
except: |
|
infos.append(traceback.format_exc()) |
|
yield "\n".join(infos) |
|
finally: |
|
try: |
|
if model_name == "onnx_dereverb_By_FoxJoy": |
|
del pre_fun.pred.model |
|
del pre_fun.pred.model_ |
|
else: |
|
del pre_fun.model |
|
del pre_fun |
|
except: |
|
traceback.print_exc() |
|
print("clean_empty_cache") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
yield "\n".join(infos) |
|
|
|
|
|
|
|
def get_vc(sid): |
|
global n_spk, tgt_sr, net_g, vc, cpt, version |
|
if sid == "" or sid == []: |
|
global hubert_model |
|
if hubert_model != None: |
|
print("clean_empty_cache") |
|
del net_g, n_spk, vc, hubert_model, tgt_sr |
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid( |
|
*cpt["config"], is_half=config.is_half |
|
) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g, cpt |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
cpt = None |
|
return {"visible": False, "__type__": "update"} |
|
person = "%s/%s" % (weight_root, sid) |
|
print("loading %s" % person) |
|
cpt = torch.load(person, map_location="cpu") |
|
tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
if_f0 = cpt.get("f0", 1) |
|
version = cpt.get("version", "v1") |
|
if version == "v1": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
|
elif version == "v2": |
|
if if_f0 == 1: |
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) |
|
else: |
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
|
del net_g.enc_q |
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) |
|
net_g.eval().to(config.device) |
|
if config.is_half: |
|
net_g = net_g.half() |
|
else: |
|
net_g = net_g.float() |
|
vc = VC(tgt_sr, config) |
|
n_spk = cpt["config"][-3] |
|
return {"visible": False, "maximum": n_spk, "__type__": "update"} |
|
|
|
|
|
def change_choices(): |
|
names = [] |
|
for name in os.listdir(weight_root): |
|
if name.endswith(".pth"): |
|
names.append(name) |
|
index_paths = [] |
|
for root, dirs, files in os.walk(index_root, topdown=False): |
|
for name in files: |
|
if name.endswith(".index") and "trained" not in name: |
|
index_paths.append("%s/%s" % (root, name)) |
|
return {"choices": sorted(names), "__type__": "update"}, { |
|
"choices": sorted(index_paths), |
|
"__type__": "update", |
|
} |
|
|
|
|
|
def clean(): |
|
return {"value": "", "__type__": "update"} |
|
|
|
|
|
sr_dict = { |
|
"32k": 32000, |
|
"40k": 40000, |
|
"48k": 48000, |
|
} |
|
|
|
|
|
def if_done(done, p): |
|
while 1: |
|
if p.poll() == None: |
|
sleep(0.5) |
|
else: |
|
break |
|
done[0] = True |
|
|
|
|
|
def if_done_multi(done, ps): |
|
while 1: |
|
|
|
|
|
flag = 1 |
|
for p in ps: |
|
if p.poll() == None: |
|
flag = 0 |
|
sleep(0.5) |
|
break |
|
if flag == 1: |
|
break |
|
done[0] = True |
|
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): |
|
sr = sr_dict[sr] |
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) |
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") |
|
f.close() |
|
cmd = ( |
|
config.python_cmd |
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " |
|
% (trainset_dir, sr, n_p, now_dir, exp_dir) |
|
+ str(config.noparallel) |
|
) |
|
print(cmd) |
|
p = Popen(cmd, shell=True) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done, |
|
args=( |
|
done, |
|
p, |
|
), |
|
).start() |
|
while 1: |
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0] == True: |
|
break |
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: |
|
log = f.read() |
|
print(log) |
|
gr.Info("End Preprocess means you're done with this step. Go to step 2.") |
|
yield log |
|
|
|
|
|
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl): |
|
gpus = gpus.split("-") |
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) |
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") |
|
f.close() |
|
if if_f0: |
|
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % ( |
|
now_dir, |
|
exp_dir, |
|
n_p, |
|
f0method, |
|
echl, |
|
) |
|
print(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done, |
|
args=( |
|
done, |
|
p, |
|
), |
|
).start() |
|
while 1: |
|
with open( |
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" |
|
) as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0] == True: |
|
break |
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: |
|
log = f.read() |
|
print(log) |
|
gr.Info('Wait to see "all feature done" in the status box to know it finished.') |
|
yield log |
|
|
|
""" |
|
n_part=int(sys.argv[1]) |
|
i_part=int(sys.argv[2]) |
|
i_gpu=sys.argv[3] |
|
exp_dir=sys.argv[4] |
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) |
|
""" |
|
leng = len(gpus) |
|
ps = [] |
|
for idx, n_g in enumerate(gpus): |
|
cmd = ( |
|
config.python_cmd |
|
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s" |
|
% ( |
|
config.device, |
|
leng, |
|
idx, |
|
n_g, |
|
now_dir, |
|
exp_dir, |
|
version19, |
|
) |
|
) |
|
print(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
ps.append(p) |
|
|
|
done = [False] |
|
threading.Thread( |
|
target=if_done_multi, |
|
args=( |
|
done, |
|
ps, |
|
), |
|
).start() |
|
while 1: |
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: |
|
yield (f.read()) |
|
sleep(1) |
|
if done[0] == True: |
|
break |
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: |
|
log = f.read() |
|
print(log) |
|
yield log |
|
|
|
|
|
def change_sr2(sr2, if_f0_3, version19): |
|
path_str = "" if version19 == "v1" else "_v2" |
|
f0_str = "f0" if if_f0_3 else "" |
|
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK) |
|
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK) |
|
if (if_pretrained_generator_exist == False): |
|
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model") |
|
if (if_pretrained_discriminator_exist == False): |
|
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model") |
|
return ( |
|
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "", |
|
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "", |
|
{"visible": True, "__type__": "update"} |
|
) |
|
|
|
def change_version19(sr2, if_f0_3, version19): |
|
path_str = "" if version19 == "v1" else "_v2" |
|
f0_str = "f0" if if_f0_3 else "" |
|
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK) |
|
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK) |
|
if (if_pretrained_generator_exist == False): |
|
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model") |
|
if (if_pretrained_discriminator_exist == False): |
|
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model") |
|
return ( |
|
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "", |
|
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "", |
|
) |
|
|
|
|
|
def change_f0(if_f0_3, sr2, version19): |
|
path_str = "" if version19 == "v1" else "_v2" |
|
if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK) |
|
if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK) |
|
if (if_pretrained_generator_exist == False): |
|
print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model") |
|
if (if_pretrained_discriminator_exist == False): |
|
print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model") |
|
if if_f0_3: |
|
return ( |
|
{"visible": True, "__type__": "update"}, |
|
"pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "", |
|
"pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "", |
|
) |
|
return ( |
|
{"visible": False, "__type__": "update"}, |
|
("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "", |
|
("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "", |
|
) |
|
|
|
|
|
|
|
def click_train( |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
spk_id5, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
): |
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) |
|
os.makedirs(exp_dir, exist_ok=True) |
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) |
|
feature_dir = ( |
|
"%s/3_feature256" % (exp_dir) |
|
if version19 == "v1" |
|
else "%s/3_feature768" % (exp_dir) |
|
) |
|
if if_f0_3: |
|
f0_dir = "%s/2a_f0" % (exp_dir) |
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) |
|
names = ( |
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) |
|
) |
|
else: |
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( |
|
[name.split(".")[0] for name in os.listdir(feature_dir)] |
|
) |
|
opt = [] |
|
for name in names: |
|
if if_f0_3: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
f0_dir.replace("\\", "\\\\"), |
|
name, |
|
f0nsf_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
else: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
fea_dim = 256 if version19 == "v1" else 768 |
|
if if_f0_3: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) |
|
) |
|
else: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5) |
|
) |
|
shuffle(opt) |
|
with open("%s/filelist.txt" % exp_dir, "w") as f: |
|
f.write("\n".join(opt)) |
|
print("write filelist done") |
|
|
|
|
|
print("use gpus:", gpus16) |
|
if pretrained_G14 == "": |
|
print("no pretrained Generator") |
|
if pretrained_D15 == "": |
|
print("no pretrained Discriminator") |
|
if gpus16: |
|
cmd = ( |
|
config.python_cmd |
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
gpus16, |
|
total_epoch11, |
|
save_epoch10, |
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "", |
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
else: |
|
cmd = ( |
|
config.python_cmd |
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
total_epoch11, |
|
save_epoch10, |
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b", |
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
print(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
p.wait() |
|
gr.Warning('Done! Check your console in Colab to see if it trained successfully.') |
|
return 'Done! Check your console in Colab to see if it trained successfully.' |
|
|
|
|
|
|
|
def train_index(exp_dir1, version19): |
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) |
|
os.makedirs(exp_dir, exist_ok=True) |
|
feature_dir = ( |
|
"%s/3_feature256" % (exp_dir) |
|
if version19 == "v1" |
|
else "%s/3_feature768" % (exp_dir) |
|
) |
|
if os.path.exists(feature_dir) == False: |
|
return "请先进行特征提取!" |
|
listdir_res = list(os.listdir(feature_dir)) |
|
if len(listdir_res) == 0: |
|
return "请先进行特征提取!" |
|
npys = [] |
|
for name in sorted(listdir_res): |
|
phone = np.load("%s/%s" % (feature_dir, name)) |
|
npys.append(phone) |
|
big_npy = np.concatenate(npys, 0) |
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
np.save("%s/total_fea.npy" % exp_dir, big_npy) |
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
infos = [] |
|
infos.append("%s,%s" % (big_npy.shape, n_ivf)) |
|
yield "\n".join(infos) |
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) |
|
|
|
infos.append("training") |
|
yield "\n".join(infos) |
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 1 |
|
index.train(big_npy) |
|
faiss.write_index( |
|
index, |
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
|
|
infos.append("adding") |
|
yield "\n".join(infos) |
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index.add(big_npy[i : i + batch_size_add]) |
|
faiss.write_index( |
|
index, |
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
infos.append( |
|
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) |
|
) |
|
|
|
|
|
gr.Info('Successfully trained the index file!') |
|
yield "\n".join(infos) |
|
|
|
|
|
|
|
def train1key( |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
trainset_dir4, |
|
spk_id5, |
|
np7, |
|
f0method8, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
echl |
|
): |
|
infos = [] |
|
|
|
def get_info_str(strr): |
|
infos.append(strr) |
|
return "\n".join(infos) |
|
|
|
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1) |
|
preprocess_log_path = "%s/preprocess.log" % model_log_dir |
|
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir |
|
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir |
|
feature_dir = ( |
|
"%s/3_feature256" % model_log_dir |
|
if version19 == "v1" |
|
else "%s/3_feature768" % model_log_dir |
|
) |
|
|
|
os.makedirs(model_log_dir, exist_ok=True) |
|
|
|
open(preprocess_log_path, "w").close() |
|
cmd = ( |
|
config.python_cmd |
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s " |
|
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir) |
|
+ str(config.noparallel) |
|
) |
|
yield get_info_str(i18n("step1:正在处理数据")) |
|
yield get_info_str(cmd) |
|
p = Popen(cmd, shell=True) |
|
p.wait() |
|
with open(preprocess_log_path, "r") as f: |
|
print(f.read()) |
|
|
|
open(extract_f0_feature_log_path, "w") |
|
if if_f0_3: |
|
yield get_info_str("step2a:正在提取音高") |
|
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % ( |
|
model_log_dir, |
|
np7, |
|
f0method8, |
|
echl |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
p.wait() |
|
with open(extract_f0_feature_log_path, "r") as f: |
|
print(f.read()) |
|
else: |
|
yield get_info_str(i18n("step2a:无需提取音高")) |
|
|
|
yield get_info_str(i18n("step2b:正在提取特征")) |
|
gpus = gpus16.split("-") |
|
leng = len(gpus) |
|
ps = [] |
|
for idx, n_g in enumerate(gpus): |
|
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % ( |
|
config.device, |
|
leng, |
|
idx, |
|
n_g, |
|
model_log_dir, |
|
version19, |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen( |
|
cmd, shell=True, cwd=now_dir |
|
) |
|
ps.append(p) |
|
for p in ps: |
|
p.wait() |
|
with open(extract_f0_feature_log_path, "r") as f: |
|
print(f.read()) |
|
|
|
yield get_info_str(i18n("step3a:正在训练模型")) |
|
|
|
if if_f0_3: |
|
f0_dir = "%s/2a_f0" % model_log_dir |
|
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir |
|
names = ( |
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) |
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) |
|
) |
|
else: |
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( |
|
[name.split(".")[0] for name in os.listdir(feature_dir)] |
|
) |
|
opt = [] |
|
for name in names: |
|
if if_f0_3: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
f0_dir.replace("\\", "\\\\"), |
|
name, |
|
f0nsf_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
else: |
|
opt.append( |
|
"%s/%s.wav|%s/%s.npy|%s" |
|
% ( |
|
gt_wavs_dir.replace("\\", "\\\\"), |
|
name, |
|
feature_dir.replace("\\", "\\\\"), |
|
name, |
|
spk_id5, |
|
) |
|
) |
|
fea_dim = 256 if version19 == "v1" else 768 |
|
if if_f0_3: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) |
|
) |
|
else: |
|
for _ in range(2): |
|
opt.append( |
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" |
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5) |
|
) |
|
shuffle(opt) |
|
with open("%s/filelist.txt" % model_log_dir, "w") as f: |
|
f.write("\n".join(opt)) |
|
yield get_info_str("write filelist done") |
|
if gpus16: |
|
cmd = ( |
|
config.python_cmd |
|
+" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
gpus16, |
|
total_epoch11, |
|
save_epoch10, |
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "", |
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
else: |
|
cmd = ( |
|
config.python_cmd |
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" |
|
% ( |
|
exp_dir1, |
|
sr2, |
|
1 if if_f0_3 else 0, |
|
batch_size12, |
|
total_epoch11, |
|
save_epoch10, |
|
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "", |
|
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "", |
|
1 if if_save_latest13 == i18n("是") else 0, |
|
1 if if_cache_gpu17 == i18n("是") else 0, |
|
1 if if_save_every_weights18 == i18n("是") else 0, |
|
version19, |
|
) |
|
) |
|
yield get_info_str(cmd) |
|
p = Popen(cmd, shell=True, cwd=now_dir) |
|
p.wait() |
|
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) |
|
|
|
npys = [] |
|
listdir_res = list(os.listdir(feature_dir)) |
|
for name in sorted(listdir_res): |
|
phone = np.load("%s/%s" % (feature_dir, name)) |
|
npys.append(phone) |
|
big_npy = np.concatenate(npys, 0) |
|
|
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
np.save("%s/total_fea.npy" % model_log_dir, big_npy) |
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) |
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) |
|
yield get_info_str("training index") |
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 1 |
|
index.train(big_npy) |
|
faiss.write_index( |
|
index, |
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
yield get_info_str("adding index") |
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index.add(big_npy[i : i + batch_size_add]) |
|
faiss.write_index( |
|
index, |
|
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), |
|
) |
|
yield get_info_str( |
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index" |
|
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) |
|
) |
|
yield get_info_str(i18n("全流程结束!")) |
|
|
|
|
|
|
|
def change_info_(ckpt_path): |
|
if ( |
|
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")) |
|
== False |
|
): |
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} |
|
try: |
|
with open( |
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" |
|
) as f: |
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) |
|
sr, f0 = info["sample_rate"], info["if_f0"] |
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1" |
|
return sr, str(f0), version |
|
except: |
|
traceback.print_exc() |
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} |
|
|
|
|
|
from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM |
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath, MoeVS=True): |
|
cpt = torch.load(ModelPath, map_location="cpu") |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768 |
|
|
|
test_phone = torch.rand(1, 200, hidden_channels) |
|
test_phone_lengths = torch.tensor([200]).long() |
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255) |
|
test_pitchf = torch.rand(1, 200) |
|
test_ds = torch.LongTensor([0]) |
|
test_rnd = torch.rand(1, 192, 200) |
|
|
|
device = "cpu" |
|
|
|
|
|
net_g = SynthesizerTrnMsNSFsidM( |
|
*cpt["config"], is_half=False,version=cpt.get("version","v1") |
|
) |
|
net_g.load_state_dict(cpt["weight"], strict=False) |
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] |
|
output_names = [ |
|
"audio", |
|
] |
|
|
|
torch.onnx.export( |
|
net_g, |
|
( |
|
test_phone.to(device), |
|
test_phone_lengths.to(device), |
|
test_pitch.to(device), |
|
test_pitchf.to(device), |
|
test_ds.to(device), |
|
test_rnd.to(device), |
|
), |
|
ExportedPath, |
|
dynamic_axes={ |
|
"phone": [1], |
|
"pitch": [1], |
|
"pitchf": [1], |
|
"rnd": [2], |
|
}, |
|
do_constant_folding=False, |
|
opset_version=16, |
|
verbose=False, |
|
input_names=input_names, |
|
output_names=output_names, |
|
) |
|
return "Finished" |
|
|
|
|
|
|
|
import re as regex |
|
import scipy.io.wavfile as wavfile |
|
|
|
cli_current_page = "HOME" |
|
|
|
def cli_split_command(com): |
|
exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)' |
|
split_array = regex.findall(exp, com) |
|
split_array = [group[0] if group[0] else group[1] for group in split_array] |
|
return split_array |
|
|
|
def execute_generator_function(genObject): |
|
for _ in genObject: pass |
|
|
|
def cli_infer(com): |
|
|
|
com = cli_split_command(com) |
|
model_name = com[0] |
|
source_audio_path = com[1] |
|
output_file_name = com[2] |
|
feature_index_path = com[3] |
|
f0_file = None |
|
|
|
|
|
speaker_id = int(com[4]) |
|
transposition = float(com[5]) |
|
f0_method = com[6] |
|
crepe_hop_length = int(com[7]) |
|
harvest_median_filter = int(com[8]) |
|
resample = int(com[9]) |
|
mix = float(com[10]) |
|
feature_ratio = float(com[11]) |
|
protection_amnt = float(com[12]) |
|
|
|
print("Mangio-RVC-Fork Infer-CLI: Starting the inference...") |
|
vc_data = get_vc(model_name) |
|
print(vc_data) |
|
print("Mangio-RVC-Fork Infer-CLI: Performing inference...") |
|
conversion_data = vc_single( |
|
speaker_id, |
|
source_audio_path, |
|
transposition, |
|
f0_file, |
|
f0_method, |
|
feature_index_path, |
|
|
|
feature_ratio, |
|
harvest_median_filter, |
|
resample, |
|
mix, |
|
protection_amnt, |
|
crepe_hop_length, |
|
) |
|
if "Success." in conversion_data[0]: |
|
print("Mangio-RVC-Fork Infer-CLI: Inference succeeded. Writing to %s/%s..." % ('audio-outputs', output_file_name)) |
|
wavfile.write('%s/%s' % ('audio-outputs', output_file_name), conversion_data[1][0], conversion_data[1][1]) |
|
print("Mangio-RVC-Fork Infer-CLI: Finished! Saved output to %s/%s" % ('audio-outputs', output_file_name)) |
|
else: |
|
print("Mangio-RVC-Fork Infer-CLI: Inference failed. Here's the traceback: ") |
|
print(conversion_data[0]) |
|
|
|
def cli_pre_process(com): |
|
com = cli_split_command(com) |
|
model_name = com[0] |
|
trainset_directory = com[1] |
|
sample_rate = com[2] |
|
num_processes = int(com[3]) |
|
|
|
print("Mangio-RVC-Fork Pre-process: Starting...") |
|
generator = preprocess_dataset( |
|
trainset_directory, |
|
model_name, |
|
sample_rate, |
|
num_processes |
|
) |
|
execute_generator_function(generator) |
|
print("Mangio-RVC-Fork Pre-process: Finished") |
|
|
|
def cli_extract_feature(com): |
|
com = cli_split_command(com) |
|
model_name = com[0] |
|
gpus = com[1] |
|
num_processes = int(com[2]) |
|
has_pitch_guidance = True if (int(com[3]) == 1) else False |
|
f0_method = com[4] |
|
crepe_hop_length = int(com[5]) |
|
version = com[6] |
|
|
|
print("Mangio-RVC-CLI: Extract Feature Has Pitch: " + str(has_pitch_guidance)) |
|
print("Mangio-RVC-CLI: Extract Feature Version: " + str(version)) |
|
print("Mangio-RVC-Fork Feature Extraction: Starting...") |
|
generator = extract_f0_feature( |
|
gpus, |
|
num_processes, |
|
f0_method, |
|
has_pitch_guidance, |
|
model_name, |
|
version, |
|
crepe_hop_length |
|
) |
|
execute_generator_function(generator) |
|
print("Mangio-RVC-Fork Feature Extraction: Finished") |
|
|
|
def cli_train(com): |
|
com = cli_split_command(com) |
|
model_name = com[0] |
|
sample_rate = com[1] |
|
has_pitch_guidance = True if (int(com[2]) == 1) else False |
|
speaker_id = int(com[3]) |
|
save_epoch_iteration = int(com[4]) |
|
total_epoch = int(com[5]) |
|
batch_size = int(com[6]) |
|
gpu_card_slot_numbers = com[7] |
|
if_save_latest = i18n("是") if (int(com[8]) == 1) else i18n("否") |
|
if_cache_gpu = i18n("是") if (int(com[9]) == 1) else i18n("否") |
|
if_save_every_weight = i18n("是") if (int(com[10]) == 1) else i18n("否") |
|
version = com[11] |
|
|
|
pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/" |
|
|
|
g_pretrained_path = "%sf0G%s.pth" % (pretrained_base, sample_rate) |
|
d_pretrained_path = "%sf0D%s.pth" % (pretrained_base, sample_rate) |
|
|
|
print("Mangio-RVC-Fork Train-CLI: Training...") |
|
click_train( |
|
model_name, |
|
sample_rate, |
|
has_pitch_guidance, |
|
speaker_id, |
|
save_epoch_iteration, |
|
total_epoch, |
|
batch_size, |
|
if_save_latest, |
|
g_pretrained_path, |
|
d_pretrained_path, |
|
gpu_card_slot_numbers, |
|
if_cache_gpu, |
|
if_save_every_weight, |
|
version |
|
) |
|
|
|
def cli_train_feature(com): |
|
com = cli_split_command(com) |
|
model_name = com[0] |
|
version = com[1] |
|
print("Mangio-RVC-Fork Train Feature Index-CLI: Training... Please wait") |
|
generator = train_index( |
|
model_name, |
|
version |
|
) |
|
execute_generator_function(generator) |
|
print("Mangio-RVC-Fork Train Feature Index-CLI: Done!") |
|
|
|
def cli_extract_model(com): |
|
com = cli_split_command(com) |
|
model_path = com[0] |
|
save_name = com[1] |
|
sample_rate = com[2] |
|
has_pitch_guidance = com[3] |
|
info = com[4] |
|
version = com[5] |
|
extract_small_model_process = extract_small_model( |
|
model_path, |
|
save_name, |
|
sample_rate, |
|
has_pitch_guidance, |
|
info, |
|
version |
|
) |
|
if extract_small_model_process == "Success.": |
|
print("Mangio-RVC-Fork Extract Small Model: Success!") |
|
else: |
|
print(str(extract_small_model_process)) |
|
print("Mangio-RVC-Fork Extract Small Model: Failed!") |
|
|
|
def print_page_details(): |
|
if cli_current_page == "HOME": |
|
print(" go home : Takes you back to home with a navigation list.") |
|
print(" go infer : Takes you to inference command execution.\n") |
|
print(" go pre-process : Takes you to training step.1) pre-process command execution.") |
|
print(" go extract-feature : Takes you to training step.2) extract-feature command execution.") |
|
print(" go train : Takes you to training step.3) being or continue training command execution.") |
|
print(" go train-feature : Takes you to the train feature index command execution.\n") |
|
print(" go extract-model : Takes you to the extract small model command execution.") |
|
elif cli_current_page == "INFER": |
|
print(" arg 1) model name with .pth in ./weights: mi-test.pth") |
|
print(" arg 2) source audio path: myFolder\\MySource.wav") |
|
print(" arg 3) output file name to be placed in './audio-outputs': MyTest.wav") |
|
print(" arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index") |
|
print(" arg 5) speaker id: 0") |
|
print(" arg 6) transposition: 0") |
|
print(" arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny)") |
|
print(" arg 8) crepe hop length: 160") |
|
print(" arg 9) harvest median filter radius: 3 (0-7)") |
|
print(" arg 10) post resample rate: 0") |
|
print(" arg 11) mix volume envelope: 1") |
|
print(" arg 12) feature index ratio: 0.78 (0-1)") |
|
print(" arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.) \n") |
|
print("Example: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33") |
|
elif cli_current_page == "PRE-PROCESS": |
|
print(" arg 1) Model folder name in ./logs: mi-test") |
|
print(" arg 2) Trainset directory: mydataset (or) E:\\my-data-set") |
|
print(" arg 3) Sample rate: 40k (32k, 40k, 48k)") |
|
print(" arg 4) Number of CPU threads to use: 8 \n") |
|
print("Example: mi-test mydataset 40k 24") |
|
elif cli_current_page == "EXTRACT-FEATURE": |
|
print(" arg 1) Model folder name in ./logs: mi-test") |
|
print(" arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)") |
|
print(" arg 3) Number of CPU threads to use: 8") |
|
print(" arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)") |
|
print(" arg 5) f0 Method: harvest (pm, harvest, dio, crepe)") |
|
print(" arg 6) Crepe hop length: 128") |
|
print(" arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n") |
|
print("Example: mi-test 0 24 1 harvest 128 v2") |
|
elif cli_current_page == "TRAIN": |
|
print(" arg 1) Model folder name in ./logs: mi-test") |
|
print(" arg 2) Sample rate: 40k (32k, 40k, 48k)") |
|
print(" arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)") |
|
print(" arg 4) speaker id: 0") |
|
print(" arg 5) Save epoch iteration: 50") |
|
print(" arg 6) Total epochs: 10000") |
|
print(" arg 7) Batch size: 8") |
|
print(" arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)") |
|
print(" arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)") |
|
print(" arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)") |
|
print(" arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)") |
|
print(" arg 12) Model architecture version: v2 (use either v1 or v2)\n") |
|
print("Example: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2") |
|
elif cli_current_page == "TRAIN-FEATURE": |
|
print(" arg 1) Model folder name in ./logs: mi-test") |
|
print(" arg 2) Model architecture version: v2 (use either v1 or v2)\n") |
|
print("Example: mi-test v2") |
|
elif cli_current_page == "EXTRACT-MODEL": |
|
print(" arg 1) Model Path: logs/mi-test/G_168000.pth") |
|
print(" arg 2) Model save name: MyModel") |
|
print(" arg 3) Sample rate: 40k (32k, 40k, 48k)") |
|
print(" arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)") |
|
print(' arg 5) Model information: "My Model"') |
|
print(" arg 6) Model architecture version: v2 (use either v1 or v2)\n") |
|
print('Example: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2') |
|
print("") |
|
|
|
def change_page(page): |
|
global cli_current_page |
|
cli_current_page = page |
|
return 0 |
|
|
|
def execute_command(com): |
|
if com == "go home": |
|
return change_page("HOME") |
|
elif com == "go infer": |
|
return change_page("INFER") |
|
elif com == "go pre-process": |
|
return change_page("PRE-PROCESS") |
|
elif com == "go extract-feature": |
|
return change_page("EXTRACT-FEATURE") |
|
elif com == "go train": |
|
return change_page("TRAIN") |
|
elif com == "go train-feature": |
|
return change_page("TRAIN-FEATURE") |
|
elif com == "go extract-model": |
|
return change_page("EXTRACT-MODEL") |
|
else: |
|
if com[:3] == "go ": |
|
print("page '%s' does not exist!" % com[3:]) |
|
return 0 |
|
|
|
if cli_current_page == "INFER": |
|
cli_infer(com) |
|
elif cli_current_page == "PRE-PROCESS": |
|
cli_pre_process(com) |
|
elif cli_current_page == "EXTRACT-FEATURE": |
|
cli_extract_feature(com) |
|
elif cli_current_page == "TRAIN": |
|
cli_train(com) |
|
elif cli_current_page == "TRAIN-FEATURE": |
|
cli_train_feature(com) |
|
elif cli_current_page == "EXTRACT-MODEL": |
|
cli_extract_model(com) |
|
|
|
def cli_navigation_loop(): |
|
while True: |
|
print("You are currently in '%s':" % cli_current_page) |
|
print_page_details() |
|
command = input("%s: " % cli_current_page) |
|
try: |
|
execute_command(command) |
|
except: |
|
print(traceback.format_exc()) |
|
|
|
if(config.is_cli): |
|
print("\n\nMangio-RVC-Fork v2 CLI App!\n") |
|
print("Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n") |
|
cli_navigation_loop() |
|
|
|
|
|
|
|
|
|
|
|
def get_presets(): |
|
data = None |
|
with open('../inference-presets.json', 'r') as file: |
|
data = json.load(file) |
|
preset_names = [] |
|
for preset in data['presets']: |
|
preset_names.append(preset['name']) |
|
|
|
return preset_names |
|
|
|
def change_choices2(): |
|
audio_files=[] |
|
for filename in os.listdir("./audios"): |
|
if filename.endswith(('.wav','.mp3','.ogg')): |
|
audio_files.append(filename) |
|
return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"} |
|
|
|
audio_files=[] |
|
if not os.path.exists('audios'): |
|
os.mkdir('audios') |
|
for filename in os.listdir("./audios"): |
|
if filename.endswith(('.wav','.mp3','.ogg')): |
|
audio_files.append(filename) |
|
|
|
def get_index(): |
|
if check_for_name() != '': |
|
chosen_model=sorted(names)[0].split(".")[0] |
|
logs_path="./logs/"+chosen_model |
|
if os.path.exists(logs_path): |
|
for file in os.listdir(logs_path): |
|
if file.endswith(".index"): |
|
return os.path.join(logs_path, file) |
|
return '' |
|
else: |
|
return '' |
|
|
|
def get_indexes(): |
|
indexes_list=[] |
|
for dirpath, dirnames, filenames in os.walk("./logs/"): |
|
for filename in filenames: |
|
if filename.endswith(".index"): |
|
indexes_list.append(os.path.join(dirpath,filename)) |
|
if len(indexes_list) > 0: |
|
return indexes_list |
|
else: |
|
return '' |
|
|
|
def get_name(): |
|
if len(audio_files) > 0: |
|
return sorted(audio_files)[0] |
|
else: |
|
return '' |
|
|
|
def save_to_wav(record_button): |
|
if record_button is None: |
|
pass |
|
else: |
|
path_to_file=record_button |
|
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' |
|
new_path='./audios/'+new_name |
|
shutil.move(path_to_file,new_path) |
|
return os.path.basename(new_path) |
|
|
|
def save_to_wav2(dropbox): |
|
file_path=dropbox.name |
|
shutil.move(file_path,'./audios') |
|
return os.path.basename(file_path) |
|
|
|
def match_index(sid0): |
|
folder=sid0.split(".")[0] |
|
parent_dir="./logs/"+folder |
|
if os.path.exists(parent_dir): |
|
for filename in os.listdir(parent_dir): |
|
if filename.endswith(".index"): |
|
index_path=os.path.join(parent_dir,filename) |
|
return index_path |
|
else: |
|
return '' |
|
|
|
def check_for_name(): |
|
if len(names) > 0: |
|
return sorted(names)[0] |
|
else: |
|
return '' |
|
|
|
def download_from_url(url, model): |
|
if url == '': |
|
return "URL cannot be left empty." |
|
if model =='': |
|
return "You need to name your model. For example: My-Model" |
|
url = url.strip() |
|
zip_dirs = ["zips", "unzips"] |
|
for directory in zip_dirs: |
|
if os.path.exists(directory): |
|
shutil.rmtree(directory) |
|
os.makedirs("zips", exist_ok=True) |
|
os.makedirs("unzips", exist_ok=True) |
|
zipfile = model + '.zip' |
|
zipfile_path = './zips/' + zipfile |
|
try: |
|
if "drive.google.com" in url: |
|
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path]) |
|
elif "mega.nz" in url: |
|
m = Mega() |
|
m.download_url(url, './zips') |
|
else: |
|
subprocess.run(["wget", url, "-O", zipfile_path]) |
|
for filename in os.listdir("./zips"): |
|
if filename.endswith(".zip"): |
|
zipfile_path = os.path.join("./zips/",filename) |
|
shutil.unpack_archive(zipfile_path, "./unzips", 'zip') |
|
else: |
|
return "No zipfile found." |
|
for root, dirs, files in os.walk('./unzips'): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
if file.endswith(".index"): |
|
os.mkdir(f'./logs/{model}') |
|
shutil.copy2(file_path,f'./logs/{model}') |
|
elif "G_" not in file and "D_" not in file and file.endswith(".pth"): |
|
shutil.copy(file_path,f'./weights/{model}.pth') |
|
shutil.rmtree("zips") |
|
shutil.rmtree("unzips") |
|
return "Success." |
|
except: |
|
return "There's been an error." |
|
def success_message(face): |
|
return f'{face.name} has been uploaded.', 'None' |
|
def mouth(size, face, voice, faces): |
|
if size == 'Half': |
|
size = 2 |
|
else: |
|
size = 1 |
|
if faces == 'None': |
|
character = face.name |
|
else: |
|
if faces == 'Ben Shapiro': |
|
character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4' |
|
elif faces == 'Andrew Tate': |
|
character = '/content/wav2lip-HD/inputs/tate-7.mp4' |
|
command = "python inference.py " \ |
|
"--checkpoint_path checkpoints/wav2lip.pth " \ |
|
f"--face {character} " \ |
|
f"--audio {voice} " \ |
|
"--pads 0 20 0 0 " \ |
|
"--outfile /content/wav2lip-HD/outputs/result.mp4 " \ |
|
"--fps 24 " \ |
|
f"--resize_factor {size}" |
|
process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master') |
|
stdout, stderr = process.communicate() |
|
return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.' |
|
eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli'] |
|
eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O'] |
|
chosen_voice = dict(zip(eleven_voices, eleven_voices_ids)) |
|
def elevenTTS(xiapi, text, id, lang): |
|
if xiapi!= '' and id !='': |
|
choice = chosen_voice[id] |
|
CHUNK_SIZE = 1024 |
|
url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}" |
|
headers = { |
|
"Accept": "audio/mpeg", |
|
"Content-Type": "application/json", |
|
"xi-api-key": xiapi |
|
} |
|
if lang == 'en': |
|
data = { |
|
"text": text, |
|
"model_id": "eleven_monolingual_v1", |
|
"voice_settings": { |
|
"stability": 0.5, |
|
"similarity_boost": 0.5 |
|
} |
|
} |
|
else: |
|
data = { |
|
"text": text, |
|
"model_id": "eleven_multilingual_v1", |
|
"voice_settings": { |
|
"stability": 0.5, |
|
"similarity_boost": 0.5 |
|
} |
|
} |
|
|
|
response = requests.post(url, json=data, headers=headers) |
|
with open('./temp_eleven.mp3', 'wb') as f: |
|
for chunk in response.iter_content(chunk_size=CHUNK_SIZE): |
|
if chunk: |
|
f.write(chunk) |
|
aud_path = save_to_wav('./temp_eleven.mp3') |
|
return aud_path, aud_path |
|
else: |
|
tts = gTTS(text, lang=lang) |
|
tts.save('./temp_gTTS.mp3') |
|
aud_path = save_to_wav('./temp_gTTS.mp3') |
|
return aud_path, aud_path |
|
|
|
def upload_to_dataset(files, dir): |
|
gr.Warning('Wait until your data is uploaded...') |
|
if dir == '': |
|
dir = './dataset' |
|
if not os.path.exists(dir): |
|
os.makedirs(dir) |
|
count = 0 |
|
for file in files: |
|
path=file.name |
|
shutil.copy2(path,dir) |
|
count += 1 |
|
gr.Info(f'Done! {count} files were uploaded. Now click "1.Process The Dataset."') |
|
return f' {count} files uploaded to {dir}.' |
|
|
|
def zip_downloader(model): |
|
if not os.path.exists(f'./weights/{model}.pth'): |
|
return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth' |
|
index_found = False |
|
for file in os.listdir(f'./logs/{model}'): |
|
if file.endswith('.index') and 'added' in file: |
|
log_file = file |
|
index_found = True |
|
if index_found: |
|
return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done" |
|
else: |
|
return f'./weights/{model}.pth', "Could not find Index file." |
|
|
|
def fast(filepath, spk_item, vc_transform0,f0method0,file_index1,index_rate1,filter_radius0, resample_sr0,rms_mix_rate0, protect0, hop): |
|
source_audio_path = filepath |
|
output_file_name = os.path.basename(filepath) |
|
conversion_data = vc_single( |
|
spk_item, |
|
source_audio_path, |
|
vc_transform0, |
|
f0_file, |
|
f0method0, |
|
file_index1, |
|
index_rate1, |
|
filter_radius0, |
|
resample_sr0, |
|
rms_mix_rate0, |
|
protect0, |
|
hop, |
|
"" |
|
) |
|
if "Success." in conversion_data[0]: |
|
wavfile.write(f'audio-outputs/{output_file_name}', conversion_data[1][0], conversion_data[1][1]) |
|
return f"audio-outputs/{output_file_name}", None, conversion_data[0] |
|
else: |
|
return gr.update(visible=True), None, conversion_data[0] |
|
|
|
with gr.Blocks(theme=gr.themes.Base()) as app: |
|
with gr.Tabs(): |
|
with gr.TabItem("Работа с моделью"): |
|
gr.HTML("<h1> RVC V2 by https://www.youtube.com/@ba1yya 💻 </h1>") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
sid0 = gr.Dropdown(label="1.Выберете модель.", choices=sorted(names), value=check_for_name()) |
|
refresh_button = gr.Button("Обновить", variant="primary") |
|
if check_for_name() != '': |
|
get_vc(sorted(names)[0]) |
|
vc_transform0 = gr.Number(label="Необязательно: здесь вы можете изменить высоту тона или оставить значение 0.", value=0) |
|
|
|
spk_item = gr.Slider( |
|
minimum=0, |
|
maximum=2333, |
|
step=1, |
|
label=i18n("请选择说话人id"), |
|
value=0, |
|
visible=False, |
|
interactive=True, |
|
) |
|
|
|
sid0.change( |
|
fn=get_vc, |
|
inputs=[sid0], |
|
outputs=[spk_item], |
|
) |
|
but0 = gr.Button("Обработка", variant="primary") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
dropbox = gr.File(label="Перетащите сюда свой аудиофайл и нажмите кнопку «Обновить».") |
|
with gr.Row(): |
|
record_button=gr.Audio(source="microphone", label="ИЛИ Запись звука.", type="filepath") |
|
with gr.Row(): |
|
input_audio0 = gr.Dropdown( |
|
label="2.Выберите аудио.", |
|
value="someguy.mp3", |
|
choices=audio_files |
|
) |
|
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0]) |
|
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0]) |
|
refresh_button2 = gr.Button("Обновить", variant="primary", size='sm') |
|
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0]) |
|
record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio0]) |
|
with gr.Row(): |
|
with gr.Accordion('Текст в речь', open=False): |
|
with gr.Column(): |
|
lang = gr.Radio(label='Китайский и японский языки в настоящее время не работают с ElevenLabs.',choices=['en','es','fr','pt','zh-CN','de','hi','ja'], value='en') |
|
api_box = gr.Textbox(label="Введите свой ключ API для ElevenLabs или оставьте пустым, чтобы использовать GoogleTTS", value='') |
|
elevenid=gr.Dropdown(label="Голос:", choices=eleven_voices) |
|
with gr.Column(): |
|
tfs = gr.Textbox(label="Введите свой текст", interactive=True, value="This is a test.") |
|
tts_button = gr.Button(value="Говорить") |
|
tts_button.click(fn=elevenTTS, inputs=[api_box,tfs, elevenid, lang], outputs=[record_button, input_audio0]) |
|
with gr.Row(): |
|
with gr.Accordion('Wav2Lip', open=False): |
|
with gr.Row(): |
|
size = gr.Radio(label='Разрешение:',choices=['Half','Full']) |
|
face = gr.UploadButton("Загрузите персонажа",type='file') |
|
faces = gr.Dropdown(label="ИЛИ Выберите один:", choices=['None','Ben Shapiro','Andrew Tate']) |
|
with gr.Row(): |
|
preview = gr.Textbox(label="Статус:",interactive=False) |
|
face.upload(fn=success_message,inputs=[face], outputs=[preview, faces]) |
|
with gr.Row(): |
|
animation = gr.Video(type='filepath') |
|
refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0, animation]) |
|
with gr.Row(): |
|
animate_button = gr.Button('Animate') |
|
|
|
with gr.Column(): |
|
with gr.Accordion("Настройки индекса", open=False): |
|
file_index1 = gr.Dropdown( |
|
label="3. Путь к файлу add.index (если он не был найден автоматически)", |
|
choices=get_indexes(), |
|
value=get_index(), |
|
interactive=True, |
|
) |
|
sid0.change(fn=match_index, inputs=[sid0],outputs=[file_index1]) |
|
refresh_button.click( |
|
fn=change_choices, inputs=[], outputs=[sid0, file_index1] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
index_rate1 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("检索特征占比"), |
|
value=0.66, |
|
interactive=True, |
|
) |
|
vc_output2 = gr.Audio(label="Вывод аудио (нажмите три точки в правом углу, чтобы загрузить)",type='filepath') |
|
animate_button.click(fn=mouth, inputs=[size, face, vc_output2, faces], outputs=[animation, preview]) |
|
with gr.Accordion("Расширенные настройки", open=False): |
|
f0method0 = gr.Radio( |
|
label="Необязательно: измените алгоритм извлечения высоты звука.", |
|
choices=["pm", "rmvpe", "dio", "mangio-crepe-tiny", "crepe-tiny", "crepe", "mangio-crepe", "harvest"], |
|
value="rmvpe", |
|
interactive=True, |
|
) |
|
crepe_hop_length = gr.Slider( |
|
minimum=1, |
|
maximum=512, |
|
step=1, |
|
label="Mangio-Crepe Hop Length. Более высокие числа уменьшат вероятность резких изменений шага, но меньшие числа повысят точность.", |
|
value=120, |
|
interactive=True |
|
) |
|
filter_radius0 = gr.Slider( |
|
minimum=0, |
|
maximum=7, |
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), |
|
value=3, |
|
step=1, |
|
interactive=True, |
|
) |
|
resample_sr0 = gr.Slider( |
|
minimum=0, |
|
maximum=48000, |
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), |
|
value=0, |
|
step=1, |
|
interactive=True, |
|
visible=False |
|
) |
|
rms_mix_rate0 = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), |
|
value=0.21, |
|
interactive=True, |
|
) |
|
protect0 = gr.Slider( |
|
minimum=0, |
|
maximum=0.5, |
|
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"), |
|
value=0.33, |
|
step=0.01, |
|
interactive=True, |
|
) |
|
with gr.Accordion("Fast-Mode (TESTING)", open=False): |
|
fast_audio = gr.Audio(label="As soon as you stop recording, inference will start.",type="filepath", source="microphone", autoplay=False) |
|
fast_result = gr.Audio(label="Result",type="filepath", autoplay=True) |
|
|
|
with gr.Row(): |
|
vc_output1 = gr.Textbox(label="Output Information:") |
|
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False) |
|
fast_audio.stop_recording( |
|
fn=fast, |
|
inputs=[ |
|
fast_audio, |
|
spk_item, |
|
vc_transform0, |
|
f0method0, |
|
file_index1, |
|
index_rate1, |
|
filter_radius0, |
|
resample_sr0, |
|
rms_mix_rate0, |
|
protect0, |
|
crepe_hop_length |
|
], |
|
outputs=[ |
|
fast_result, |
|
fast_audio, |
|
vc_output1 |
|
] |
|
) |
|
but0.click( |
|
vc_single, |
|
[ |
|
spk_item, |
|
input_audio0, |
|
vc_transform0, |
|
f0_file, |
|
f0method0, |
|
file_index1, |
|
|
|
|
|
index_rate1, |
|
filter_radius0, |
|
resample_sr0, |
|
rms_mix_rate0, |
|
protect0, |
|
crepe_hop_length |
|
], |
|
[vc_output1, vc_output2], |
|
) |
|
|
|
with gr.TabItem("Загрузка готовой модели"): |
|
with gr.Row(): |
|
url=gr.Textbox(label="Введите URL-адрес модели:") |
|
with gr.Row(): |
|
model = gr.Textbox(label="Назовите свою модель:") |
|
download_button=gr.Button("Загрузить") |
|
with gr.Row(): |
|
status_bar=gr.Textbox(label="") |
|
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar]) |
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
Original RVC:https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI |
|
❤️ Если вам нравится моя версия RVC, помогите мне сохранить ее.❤️ |
|
https://boosty.to/ba1yya |
|
""" |
|
) |
|
|
|
with gr.TabItem("Тренировка", visible=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
exp_dir1 = gr.Textbox(label="Голосовое имя:", value="Voice_1") |
|
sr2 = gr.Radio( |
|
label=i18n("目标采样率"), |
|
choices=["40k", "48k"], |
|
value="40k", |
|
interactive=True, |
|
visible=False |
|
) |
|
if_f0_3 = gr.Radio( |
|
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), |
|
choices=[True, False], |
|
value=True, |
|
interactive=True, |
|
visible=False |
|
) |
|
version19 = gr.Radio( |
|
label="RVC version", |
|
choices=["v1", "v2"], |
|
value="v2", |
|
interactive=True, |
|
visible=False, |
|
) |
|
np7 = gr.Slider( |
|
minimum=0, |
|
maximum=config.n_cpu, |
|
step=1, |
|
label="# of CPUs for data processing (Leave as it is)", |
|
value=config.n_cpu, |
|
interactive=True, |
|
visible=True |
|
) |
|
trainset_dir4 = gr.Textbox(label="Путь к вашему набору данных (аудиофайлы, а не zip):", value="./dataset") |
|
easy_uploader = gr.Files(label='ИЛИ Перетащите сюда свои аудиозаписи. Они будут загружены по указанному выше пути к набору данных.',file_types=['audio']) |
|
but1 = gr.Button("1.Обработать набор данных", variant="primary") |
|
info1 = gr.Textbox(label="Статус:", value="") |
|
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1]) |
|
but1.click( |
|
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1] |
|
) |
|
with gr.Column(): |
|
spk_id5 = gr.Slider( |
|
minimum=0, |
|
maximum=4, |
|
step=1, |
|
label=i18n("请指定说话人id"), |
|
value=0, |
|
interactive=True, |
|
visible=False |
|
) |
|
with gr.Accordion('GPU Settings', open=False, visible=False): |
|
gpus6 = gr.Textbox( |
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), |
|
value=gpus, |
|
interactive=True, |
|
visible=False |
|
) |
|
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) |
|
f0method8 = gr.Radio( |
|
label=i18n( |
|
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" |
|
), |
|
choices=["harvest","crepe", "mangio-crepe"], |
|
value="mangio-crepe", |
|
interactive=True, |
|
) |
|
extraction_crepe_hop_length = gr.Slider( |
|
minimum=1, |
|
maximum=512, |
|
step=1, |
|
label=i18n("crepe_hop_length"), |
|
value=128, |
|
interactive=True |
|
) |
|
but2 = gr.Button("2.Извлечение высоты тона", variant="primary") |
|
info2 = gr.Textbox(label="Статус:", value="", max_lines=8) |
|
but2.click( |
|
extract_f0_feature, |
|
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length], |
|
[info2], |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
total_epoch11 = gr.Slider( |
|
minimum=0, |
|
maximum=10000, |
|
step=10, |
|
label="Общее количество эпох обучения (много не вводите, возможна перетренировка):", |
|
value=250, |
|
interactive=True, |
|
) |
|
but3 = gr.Button("3.Тренировать модель", variant="primary") |
|
but4 = gr.Button("4.Тренировать индекс", variant="primary") |
|
info3 = gr.Textbox(label="Статус:", value="", max_lines=10) |
|
with gr.Accordion("Настройки обучения (вы можете оставить их как есть)", open=False): |
|
|
|
with gr.Column(): |
|
save_epoch10 = gr.Slider( |
|
minimum=0, |
|
maximum=100, |
|
step=5, |
|
label="Резервное копирование каждые # эпох:", |
|
value=25, |
|
interactive=True, |
|
) |
|
batch_size12 = gr.Slider( |
|
minimum=1, |
|
maximum=40, |
|
step=1, |
|
label="Размер пакета (Оставьте его, если вы не знаете, что это!):", |
|
value=default_batch_size, |
|
interactive=True, |
|
) |
|
if_save_latest13 = gr.Radio( |
|
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("是"), |
|
interactive=True, |
|
) |
|
if_cache_gpu17 = gr.Radio( |
|
label=i18n( |
|
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" |
|
), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("否"), |
|
interactive=True, |
|
) |
|
if_save_every_weights18 = gr.Radio( |
|
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), |
|
choices=[i18n("是"), i18n("否")], |
|
value=i18n("是"), |
|
interactive=True, |
|
) |
|
zip_model = gr.Button('5.Скачать модель') |
|
zipped_model = gr.Files(label='Файл вашей модели и индекса можно скачать здесь:') |
|
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3]) |
|
with gr.Group(): |
|
with gr.Accordion("Расположение базовой модели:", open=False, visible=False): |
|
pretrained_G14 = gr.Textbox( |
|
label=i18n("加载预训练底模G路径"), |
|
value="pretrained_v2/f0G40k.pth", |
|
interactive=True, |
|
) |
|
pretrained_D15 = gr.Textbox( |
|
label=i18n("加载预训练底模D路径"), |
|
value="pretrained_v2/f0D40k.pth", |
|
interactive=True, |
|
) |
|
gpus16 = gr.Textbox( |
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), |
|
value=gpus, |
|
interactive=True, |
|
) |
|
sr2.change( |
|
change_sr2, |
|
[sr2, if_f0_3, version19], |
|
[pretrained_G14, pretrained_D15, version19], |
|
) |
|
version19.change( |
|
change_version19, |
|
[sr2, if_f0_3, version19], |
|
[pretrained_G14, pretrained_D15], |
|
) |
|
if_f0_3.change( |
|
change_f0, |
|
[if_f0_3, sr2, version19], |
|
[f0method8, pretrained_G14, pretrained_D15], |
|
) |
|
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False) |
|
but3.click( |
|
click_train, |
|
[ |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
spk_id5, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
], |
|
info3, |
|
) |
|
but4.click(train_index, [exp_dir1, version19], info3) |
|
but5.click( |
|
train1key, |
|
[ |
|
exp_dir1, |
|
sr2, |
|
if_f0_3, |
|
trainset_dir4, |
|
spk_id5, |
|
np7, |
|
f0method8, |
|
save_epoch10, |
|
total_epoch11, |
|
batch_size12, |
|
if_save_latest13, |
|
pretrained_G14, |
|
pretrained_D15, |
|
gpus16, |
|
if_cache_gpu17, |
|
if_save_every_weights18, |
|
version19, |
|
extraction_crepe_hop_length |
|
], |
|
info3, |
|
) |
|
|
|
|
|
try: |
|
if tab_faq == "常见问题解答": |
|
with open("docs/faq.md", "r", encoding="utf8") as f: |
|
info = f.read() |
|
else: |
|
with open("docs/faq_en.md", "r", encoding="utf8") as f: |
|
info = f.read() |
|
gr.Markdown(value=info) |
|
except: |
|
gr.Markdown("") |
|
|
|
|
|
|
|
def save_preset(preset_name,sid0,vc_transform,input_audio,f0method,crepe_hop_length,filter_radius,file_index1,file_index2,index_rate,resample_sr,rms_mix_rate,protect,f0_file): |
|
data = None |
|
with open('../inference-presets.json', 'r') as file: |
|
data = json.load(file) |
|
preset_json = { |
|
'name': preset_name, |
|
'model': sid0, |
|
'transpose': vc_transform, |
|
'audio_file': input_audio, |
|
'f0_method': f0method, |
|
'crepe_hop_length': crepe_hop_length, |
|
'median_filtering': filter_radius, |
|
'feature_path': file_index1, |
|
'auto_feature_path': file_index2, |
|
'search_feature_ratio': index_rate, |
|
'resample': resample_sr, |
|
'volume_envelope': rms_mix_rate, |
|
'protect_voiceless': protect, |
|
'f0_file_path': f0_file |
|
} |
|
data['presets'].append(preset_json) |
|
with open('../inference-presets.json', 'w') as file: |
|
json.dump(data, file) |
|
file.flush() |
|
print("Saved Preset %s into inference-presets.json!" % preset_name) |
|
|
|
|
|
if config.iscolab or config.paperspace: |
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True, quiet=True) |
|
else: |
|
app.queue(concurrency_count=511, max_size=1022).launch( |
|
server_name="0.0.0.0", |
|
inbrowser=not config.noautoopen, |
|
server_port=config.listen_port, |
|
quiet=True, |
|
) |
|
|
|
!npm install -g localtunnel |
|
import subprocess |
|
import threading |
|
import time |
|
import socket |
|
import urllib.request |
|
def iframe_thread(port): |
|
while True: |
|
time.sleep(0.5) |
|
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) |
|
result = sock.connect_ex(('127.0.0.1', port)) |
|
if result == 0: |
|
break |
|
sock.close() |
|
|
|
from colorama import Fore, Style |
|
print(Fore.GREEN + "\nIP:", Fore.RED, urllib.request.urlopen('https://ipv4.icanhazip.com').read().decode('utf8').strip("\n"),"\n",Style.RESET_ALL) |
|
p = subprocess.Popen(["lt", "--port", "{}".format(port)], stdout=subprocess.PIPE) |
|
for line in p.stdout: |
|
print(line.decode(), end='') |
|
threading.Thread(target=iframe_thread, daemon=True, args=(7860,)).start() |