metadata
license: mit
dataset_info:
features:
- name: text_query
dtype: string
- name: language
dtype: string
- name: sparql_query
dtype: string
- name: knowledge_graphs
dtype: string
- name: context
dtype: string
splits:
- name: train
num_bytes: 374237004
num_examples: 895166
- name: test
num_bytes: 230499
num_examples: 788
download_size: 97377947
dataset_size: 374467503
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
task_categories:
- text-generation
language:
- en
- de
- he
- kn
- zh
- es
- it
- fr
- nl
- ro
- fa
- ru
tags:
- code
size_categories:
- 100K<n<1M
Dataset Description
This dataset contains 895,954 examples of natural language questions paired with their corresponding SPARQL queries. It spans 12 languages and targets 15 distinct knowledge graphs, with a significant portion focused on Wikidata and DBpedia.
The dataset was developed as a contribution for the Master Thesis: "Impact of Continual Multilingual Pre-training on Cross-Lingual Transferability for Source Languages". Its purpose is to facilitate research in text-to-SPARQL generation, particularly regarding multilinguality.
Key Features:
- Multilingual: Covers 12 languages: English (en), German (de), Hebrew (he), Kannada (kn), Chinese (zh), Spanish (es), Italian (it), French (fr), Dutch (nl), Romanian (ro), Farsi (fa), and Russian (ru).
- Diverse Knowledge Graphs: Includes queries for 15 KGs, prominently Wikidata and DBpedia.
- Large Scale: Nearly 900,000 question-SPARQL pairs.
- Augmented Data: Features German translations for many English questions and Wikidata entity/relationship mappings in the
context
column for most of the examples of Wikidata in German and English.
Dataset Structure
The dataset is provided in Parquet format and consists of the following columns:
text_query
(string): The natural language question.- (Example: "What is the boiling point of water?")
language
(string): The language code of thetext_query
(e.g., 'de', 'en', 'es').sparql_query
(string): The corresponding SPARQL query.- (Example:
PREFIX dbo: <http://dbpedia.org/ontology/> ... SELECT DISTINCT ?uri WHERE { ... }
)
- (Example:
knowledge_graphs
(string): The knowledge graph targeted by thesparql_query
(e.g., 'DBpedia', 'Wikidata').context
(string, often null): (Optional) Wikidata entity/relationship mappings in JSON string format (e.g.,{"entities": {"United States Army": "Q9212"}, "relationships": {"spouse": "P26"}}
).
Data Splits
train
: 895,954 rows.test
: 788 rows.
How to Use
You can load the dataset using the Hugging Face datasets
library:
from datasets import load_dataset
# Load a specific split (e.g., train)
dataset = load_dataset("julioc-p/Question-Sparql", split="train")
# Iterate through the dataset
for example in dataset:
print(f"Question ({example['language']}): {example['text_query']}")
print(f"Knowledge Graph: {example['knowledge_graphs']}")
print(f"SPARQL Query: {example['sparql_query']}")
if example['context']:
print(f"Context: {example['context']}")
print("-" * 20)
break