File size: 1,831 Bytes
064b3a3
8c194a9
 
 
 
 
 
 
 
 
064b3a3
 
 
 
 
 
 
 
 
 
 
 
 
 
8c194a9
064b3a3
 
 
 
 
 
55994b0
 
 
 
 
 
 
064b3a3
 
 
55994b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language:
- en
license: mit
size_categories:
- 100K<n<1M
task_categories:
- text-to-image
- image-to-image
pretty_name: NSFW Prompts
dataset_info:
  features:
  - name: model
    dtype: string
  - name: prompt
    dtype: string
  - name: negative_prompt
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 647548943
    num_examples: 851568
  download_size: 0
  dataset_size: 647548943
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
tags:
- uncensored
- nsfw
- art
- not-for-all-audiences
- diffusers
- image generation
---
# Dataset Card for "stable-diffusion-prompts-uncensored"

## Not SAFE for public - Definately Unfiltered

This dataset comes from prompts shared from images' metadata on Civitai. Not for the faint of heart. 
Thanks to Civitai.com for all the models, building a playground, allowing fine tuning of models, and generally being a good influence on model building and generation.

The purpose of this dataset is to allow for analysis of prompts and feature analysis in prompts and negative prompts.

This could be for:
- similarity
- effective prompting
- prompt alignment or misalignment
- statistical research on prompts and categories
- popularity of image generation approaches
- mimimalism prompts with certain models
- matching generated prompts to images for LLAVA purposes
- mimimizing prompts for better context usage
- social research on interest level and creative approaches
- modeling based on prompts for automating prompt generation strategy
- modeling of categorical interest and similarity
- modeling of evolution of prompts based on model versioning

A seperate upload will include metadata statistics such as cry count, laugh count, etc. for semantic analysis based on prompt length and content.