|
extends Node |
|
|
|
|
|
|
|
enum ControlModes {HUMAN, TRAINING, ONNX_INFERENCE} |
|
@export var control_mode: ControlModes = ControlModes.TRAINING |
|
@export_range(1, 10, 1, "or_greater") var action_repeat := 8 |
|
@export_range(1, 10, 1, "or_greater") var speed_up = 1 |
|
@export var onnx_model_path := "" |
|
|
|
@onready var start_time = Time.get_ticks_msec() |
|
|
|
const MAJOR_VERSION := "0" |
|
const MINOR_VERSION := "3" |
|
const DEFAULT_PORT := "11008" |
|
const DEFAULT_SEED := "1" |
|
var stream : StreamPeerTCP = null |
|
var connected = false |
|
var message_center |
|
var should_connect = true |
|
var agents |
|
var need_to_send_obs = false |
|
var args = null |
|
var initialized = false |
|
var just_reset = false |
|
var onnx_model = null |
|
var n_action_steps = 0 |
|
|
|
var _action_space : Dictionary |
|
var _obs_space : Dictionary |
|
|
|
|
|
func _ready(): |
|
await get_tree().root.ready |
|
get_tree().set_pause(true) |
|
_initialize() |
|
await get_tree().create_timer(1.0).timeout |
|
get_tree().set_pause(false) |
|
|
|
func _initialize(): |
|
_get_agents() |
|
_obs_space = agents[0].get_obs_space() |
|
_action_space = agents[0].get_action_space() |
|
args = _get_args() |
|
Engine.physics_ticks_per_second = _get_speedup() * 60 |
|
Engine.time_scale = _get_speedup() * 1.0 |
|
prints("physics ticks", Engine.physics_ticks_per_second, Engine.time_scale, _get_speedup(), speed_up) |
|
|
|
_set_heuristic("human") |
|
match control_mode: |
|
ControlModes.TRAINING: |
|
connected = connect_to_server() |
|
if connected: |
|
_set_heuristic("model") |
|
_handshake() |
|
_send_env_info() |
|
else: |
|
push_warning("Couldn't connect to Python server, using human controls instead. ", |
|
"Did you start the training server using e.g. `gdrl` from the console?") |
|
ControlModes.ONNX_INFERENCE: |
|
assert(FileAccess.file_exists(onnx_model_path), "Onnx Model Path set on Sync node does not exist: %s" % onnx_model_path) |
|
onnx_model = ONNXModel.new(onnx_model_path, 1) |
|
_set_heuristic("model") |
|
|
|
_set_seed() |
|
_set_action_repeat() |
|
initialized = true |
|
|
|
func _physics_process(_delta): |
|
|
|
|
|
if n_action_steps % action_repeat != 0: |
|
n_action_steps += 1 |
|
return |
|
|
|
n_action_steps += 1 |
|
|
|
if connected: |
|
get_tree().set_pause(true) |
|
|
|
if just_reset: |
|
just_reset = false |
|
var obs = _get_obs_from_agents() |
|
|
|
var reply = { |
|
"type": "reset", |
|
"obs": obs |
|
} |
|
_send_dict_as_json_message(reply) |
|
|
|
get_tree().set_pause(false) |
|
return |
|
|
|
if need_to_send_obs: |
|
need_to_send_obs = false |
|
var reward = _get_reward_from_agents() |
|
var done = _get_done_from_agents() |
|
|
|
|
|
var obs = _get_obs_from_agents() |
|
|
|
var reply = { |
|
"type": "step", |
|
"obs": obs, |
|
"reward": reward, |
|
"done": done |
|
} |
|
_send_dict_as_json_message(reply) |
|
|
|
var handled = handle_message() |
|
|
|
elif onnx_model != null: |
|
var obs : Array = _get_obs_from_agents() |
|
|
|
var actions = [] |
|
for o in obs: |
|
var action = onnx_model.run_inference(o["obs"], 1.0) |
|
action["output"] = clamp_array(action["output"], -1.0, 1.0) |
|
var action_dict = _extract_action_dict(action["output"]) |
|
actions.append(action_dict) |
|
|
|
_set_agent_actions(actions) |
|
need_to_send_obs = true |
|
get_tree().set_pause(false) |
|
_reset_agents_if_done() |
|
|
|
else: |
|
_reset_agents_if_done() |
|
|
|
func _extract_action_dict(action_array: Array): |
|
var index = 0 |
|
var result = {} |
|
for key in _action_space.keys(): |
|
var size = _action_space[key]["size"] |
|
if _action_space[key]["action_type"] == "discrete": |
|
result[key] = round(action_array[index]) |
|
else: |
|
result[key] = action_array.slice(index,index+size) |
|
index += size |
|
|
|
return result |
|
|
|
func _get_agents(): |
|
agents = get_tree().get_nodes_in_group("AGENT") |
|
|
|
func _set_heuristic(heuristic): |
|
for agent in agents: |
|
agent.set_heuristic(heuristic) |
|
|
|
func _handshake(): |
|
print("performing handshake") |
|
|
|
var json_dict = _get_dict_json_message() |
|
assert(json_dict["type"] == "handshake") |
|
var major_version = json_dict["major_version"] |
|
var minor_version = json_dict["minor_version"] |
|
if major_version != MAJOR_VERSION: |
|
print("WARNING: major verison mismatch ", major_version, " ", MAJOR_VERSION) |
|
if minor_version != MINOR_VERSION: |
|
print("WARNING: minor verison mismatch ", minor_version, " ", MINOR_VERSION) |
|
|
|
print("handshake complete") |
|
|
|
func _get_dict_json_message(): |
|
|
|
|
|
while stream.get_available_bytes() == 0: |
|
stream.poll() |
|
if stream.get_status() != 2: |
|
print("server disconnected status, closing") |
|
get_tree().quit() |
|
return null |
|
|
|
OS.delay_usec(10) |
|
|
|
var message = stream.get_string() |
|
var json_data = JSON.parse_string(message) |
|
|
|
return json_data |
|
|
|
func _send_dict_as_json_message(dict): |
|
stream.put_string(JSON.stringify(dict)) |
|
|
|
func _send_env_info(): |
|
var json_dict = _get_dict_json_message() |
|
assert(json_dict["type"] == "env_info") |
|
|
|
|
|
var message = { |
|
"type" : "env_info", |
|
"observation_space": _obs_space, |
|
"action_space":_action_space, |
|
"n_agents": len(agents) |
|
} |
|
_send_dict_as_json_message(message) |
|
|
|
func connect_to_server(): |
|
print("Waiting for one second to allow server to start") |
|
OS.delay_msec(1000) |
|
print("trying to connect to server") |
|
stream = StreamPeerTCP.new() |
|
|
|
|
|
var ip = "127.0.0.1" |
|
var port = _get_port() |
|
var connect = stream.connect_to_host(ip, port) |
|
stream.set_no_delay(true) |
|
stream.poll() |
|
|
|
while stream.get_status() < 2: |
|
stream.poll() |
|
return stream.get_status() == 2 |
|
|
|
func _get_args(): |
|
print("getting command line arguments") |
|
var arguments = {} |
|
for argument in OS.get_cmdline_args(): |
|
print(argument) |
|
if argument.find("=") > -1: |
|
var key_value = argument.split("=") |
|
arguments[key_value[0].lstrip("--")] = key_value[1] |
|
else: |
|
|
|
|
|
arguments[argument.lstrip("--")] = "" |
|
|
|
return arguments |
|
|
|
func _get_speedup(): |
|
print(args) |
|
return args.get("speedup", str(speed_up)).to_int() |
|
|
|
func _get_port(): |
|
return args.get("port", DEFAULT_PORT).to_int() |
|
|
|
func _set_seed(): |
|
var _seed = args.get("env_seed", DEFAULT_SEED).to_int() |
|
seed(_seed) |
|
|
|
func _set_action_repeat(): |
|
action_repeat = args.get("action_repeat", str(action_repeat)).to_int() |
|
|
|
func disconnect_from_server(): |
|
stream.disconnect_from_host() |
|
|
|
|
|
|
|
func handle_message() -> bool: |
|
|
|
var message = _get_dict_json_message() |
|
if message["type"] == "close": |
|
print("received close message, closing game") |
|
get_tree().quit() |
|
get_tree().set_pause(false) |
|
return true |
|
|
|
if message["type"] == "reset": |
|
print("resetting all agents") |
|
_reset_all_agents() |
|
just_reset = true |
|
get_tree().set_pause(false) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return true |
|
|
|
if message["type"] == "call": |
|
var method = message["method"] |
|
var returns = _call_method_on_agents(method) |
|
var reply = { |
|
"type": "call", |
|
"returns": returns |
|
} |
|
print("calling method from Python") |
|
_send_dict_as_json_message(reply) |
|
return handle_message() |
|
|
|
if message["type"] == "action": |
|
var action = message["action"] |
|
_set_agent_actions(action) |
|
need_to_send_obs = true |
|
get_tree().set_pause(false) |
|
return true |
|
|
|
print("message was not handled") |
|
return false |
|
|
|
func _call_method_on_agents(method): |
|
var returns = [] |
|
for agent in agents: |
|
returns.append(agent.call(method)) |
|
|
|
return returns |
|
|
|
|
|
func _reset_agents_if_done(): |
|
for agent in agents: |
|
if agent.get_done(): |
|
agent.set_done_false() |
|
|
|
func _reset_all_agents(): |
|
for agent in agents: |
|
agent.needs_reset = true |
|
|
|
|
|
func _get_obs_from_agents(): |
|
var obs = [] |
|
for agent in agents: |
|
obs.append(agent.get_obs()) |
|
|
|
return obs |
|
|
|
func _get_reward_from_agents(): |
|
var rewards = [] |
|
for agent in agents: |
|
rewards.append(agent.get_reward()) |
|
agent.zero_reward() |
|
return rewards |
|
|
|
func _get_done_from_agents(): |
|
var dones = [] |
|
for agent in agents: |
|
var done = agent.get_done() |
|
if done: agent.set_done_false() |
|
dones.append(done) |
|
return dones |
|
|
|
func _set_agent_actions(actions): |
|
for i in range(len(actions)): |
|
agents[i].set_action(actions[i]) |
|
|
|
func clamp_array(arr : Array, min:float, max:float): |
|
var output : Array = [] |
|
for a in arr: |
|
output.append(clamp(a, min, max)) |
|
return output |
|
|