first version of pdftoimage and ocr
Browse files- DUDE_imdb_loader.py +26 -19
DUDE_imdb_loader.py
CHANGED
@@ -193,9 +193,9 @@ def parse_azure_box(box, page_width, page_height):
|
|
193 |
return [left, width, top, height]
|
194 |
|
195 |
|
196 |
-
def get_ocr_information(
|
197 |
-
ocr_info = load_json(
|
198 |
-
num_pages, _ = get_document_metadata(documents_metadata, doc_id, documents[doc_id])
|
199 |
|
200 |
page_ocr_tokens = [[] for page_ix in range(num_pages)]
|
201 |
page_ocr_boxes = [[] for page_ix in range(num_pages)]
|
@@ -303,14 +303,19 @@ if __name__ == "__main__":
|
|
303 |
|
304 |
split = "val"
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
312 |
|
313 |
document_paths = document_paths[:30]
|
|
|
|
|
|
|
314 |
|
315 |
# document_ids = [document_filepath.split("/")[-1].replace(".pdf", "") for document_filepath in document_paths]
|
316 |
documents_metadata_filename = "documents_metadata.json"
|
@@ -328,7 +333,7 @@ if __name__ == "__main__":
|
|
328 |
]
|
329 |
print(
|
330 |
"chunksize",
|
331 |
-
len(set([
|
332 |
)
|
333 |
parallel_results = Parallel(n_jobs=num_jobs)(
|
334 |
delayed(get_document_metadata_block)(documents_metadata, documents, document_paths[i])
|
@@ -336,13 +341,13 @@ if __name__ == "__main__":
|
|
336 |
)
|
337 |
|
338 |
for block_result in parallel_results:
|
339 |
-
for
|
340 |
-
if
|
341 |
-
documents_metadata[
|
342 |
|
343 |
save_json(documents_metadata_filename, documents_metadata)
|
344 |
|
345 |
-
#2. Process OCR to obtain doc_ocr_info
|
346 |
documents_ocr_filename = "documents_ocr.json"
|
347 |
|
348 |
if os.path.exists(documents_ocr_filename):
|
@@ -352,18 +357,20 @@ if __name__ == "__main__":
|
|
352 |
no_ocr = []
|
353 |
error_ocr = []
|
354 |
|
355 |
-
for document_filepath in document_paths:
|
356 |
docId = document_filepath.split("/")[-1].replace(".pdf", "")
|
357 |
try:
|
358 |
-
ocr_tokens, ocr_boxes = get_ocr_information(docId)
|
359 |
-
doc_ocr_info[docId] = {
|
360 |
except FileNotFoundError:
|
361 |
no_ocr.append(docId)
|
362 |
except KeyError:
|
363 |
error_ocr.append(docId)
|
364 |
-
|
365 |
save_json(documents_ocr_filename, documents_ocr_info)
|
366 |
|
|
|
|
|
367 |
# page_image_dir = '/'.join(dataset['val']['document'][0].split("/")[:-1]).replace('PDF', 'images')
|
368 |
# if not os.path.exists(page_image_dir):
|
369 |
# os.makedirs(page_image_dir)
|
@@ -387,7 +394,7 @@ if __name__ == "__main__":
|
|
387 |
# doc_ocr_info
|
388 |
|
389 |
# dict to unique docs
|
390 |
-
# documents_metadata[
|
391 |
# doc_ocr_info[doc_id] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
|
392 |
|
393 |
"""
|
|
|
193 |
return [left, width, top, height]
|
194 |
|
195 |
|
196 |
+
def get_ocr_information(ocr_path, num_pages):
|
197 |
+
ocr_info = load_json(ocr_path)
|
198 |
+
#num_pages, _ = get_document_metadata(documents_metadata, doc_id, documents[doc_id])
|
199 |
|
200 |
page_ocr_tokens = [[] for page_ix in range(num_pages)]
|
201 |
page_ocr_boxes = [[] for page_ix in range(num_pages)]
|
|
|
303 |
|
304 |
split = "val"
|
305 |
|
306 |
+
OCR_paths = []
|
307 |
+
document_paths = []
|
308 |
+
for i, x in enumerate(dataset):
|
309 |
+
if x["data_split"] != split:
|
310 |
+
continue
|
311 |
+
if x["document"] not in document_paths:
|
312 |
+
document_paths.append(x["document"])
|
313 |
+
OCR_paths.append(x["OCR"])
|
314 |
|
315 |
document_paths = document_paths[:30]
|
316 |
+
OCR_paths = OCR_paths[:30]
|
317 |
+
|
318 |
+
# 1. PDF to image dir and collect document metadata (num_pages, page_image_names)
|
319 |
|
320 |
# document_ids = [document_filepath.split("/")[-1].replace(".pdf", "") for document_filepath in document_paths]
|
321 |
documents_metadata_filename = "documents_metadata.json"
|
|
|
333 |
]
|
334 |
print(
|
335 |
"chunksize",
|
336 |
+
len(set([docId for doc_block in documents_blocks for docId in doc_block])),
|
337 |
)
|
338 |
parallel_results = Parallel(n_jobs=num_jobs)(
|
339 |
delayed(get_document_metadata_block)(documents_metadata, documents, document_paths[i])
|
|
|
341 |
)
|
342 |
|
343 |
for block_result in parallel_results:
|
344 |
+
for docId, metadata in tqdm(block_result.items()):
|
345 |
+
if docId not in documents_metadata:
|
346 |
+
documents_metadata[docId] = metadata
|
347 |
|
348 |
save_json(documents_metadata_filename, documents_metadata)
|
349 |
|
350 |
+
# 2. Process OCR to obtain doc_ocr_info
|
351 |
documents_ocr_filename = "documents_ocr.json"
|
352 |
|
353 |
if os.path.exists(documents_ocr_filename):
|
|
|
357 |
no_ocr = []
|
358 |
error_ocr = []
|
359 |
|
360 |
+
for i, document_filepath in enumerate(document_paths):
|
361 |
docId = document_filepath.split("/")[-1].replace(".pdf", "")
|
362 |
try:
|
363 |
+
ocr_tokens, ocr_boxes = get_ocr_information(OCR_paths[i], documents_metadata[docId]["num_pages"])
|
364 |
+
doc_ocr_info[docId] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
|
365 |
except FileNotFoundError:
|
366 |
no_ocr.append(docId)
|
367 |
except KeyError:
|
368 |
error_ocr.append(docId)
|
369 |
+
|
370 |
save_json(documents_ocr_filename, documents_ocr_info)
|
371 |
|
372 |
+
import pdb; pdb.set_trace() # breakpoint 930f4f6a //
|
373 |
+
|
374 |
# page_image_dir = '/'.join(dataset['val']['document'][0].split("/")[:-1]).replace('PDF', 'images')
|
375 |
# if not os.path.exists(page_image_dir):
|
376 |
# os.makedirs(page_image_dir)
|
|
|
394 |
# doc_ocr_info
|
395 |
|
396 |
# dict to unique docs
|
397 |
+
# documents_metadata[docId] = {"num_pages": num_pages, "page_image_names": image_names}
|
398 |
# doc_ocr_info[doc_id] = {"ocr_tokens": ocr_tokens, "ocr_boxes": ocr_boxes}
|
399 |
|
400 |
"""
|