parquet-converter commited on
Commit
14f390b
·
1 Parent(s): e937c2d

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,40 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.onnx filter=lfs diff=lfs merge=lfs -text
13
- *.ot filter=lfs diff=lfs merge=lfs -text
14
- *.parquet filter=lfs diff=lfs merge=lfs -text
15
- *.pb filter=lfs diff=lfs merge=lfs -text
16
- *.pt filter=lfs diff=lfs merge=lfs -text
17
- *.pth filter=lfs diff=lfs merge=lfs -text
18
- *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
- *.tar.* filter=lfs diff=lfs merge=lfs -text
21
- *.tflite filter=lfs diff=lfs merge=lfs -text
22
- *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
38
- test.jsonl filter=lfs diff=lfs merge=lfs -text
39
- train.jsonl filter=lfs diff=lfs merge=lfs -text
40
- validation.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,252 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - found
4
- language_creators:
5
- - found
6
- language:
7
- - pt
8
- license:
9
- - 'other'
10
- multilinguality:
11
- - monolingual
12
- pretty_name: predicting-brazilian-court-decisions
13
- size_categories:
14
- - 1K<n<10K
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - text-classification
19
- task_ids:
20
- - multi-class-classification
21
- ---
22
-
23
- # Dataset Card for predicting-brazilian-court-decisions
24
-
25
- ## Table of Contents
26
-
27
- - [Table of Contents](#table-of-contents)
28
- - [Dataset Description](#dataset-description)
29
- - [Dataset Summary](#dataset-summary)
30
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
- - [Languages](#languages)
32
- - [Dataset Structure](#dataset-structure)
33
- - [Data Instances](#data-instances)
34
- - [Data Fields](#data-fields)
35
- - [Data Splits](#data-splits)
36
- - [Dataset Creation](#dataset-creation)
37
- - [Curation Rationale](#curation-rationale)
38
- - [Source Data](#source-data)
39
- - [Annotations](#annotations)
40
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
41
- - [Considerations for Using the Data](#considerations-for-using-the-data)
42
- - [Social Impact of Dataset](#social-impact-of-dataset)
43
- - [Discussion of Biases](#discussion-of-biases)
44
- - [Other Known Limitations](#other-known-limitations)
45
- - [Additional Information](#additional-information)
46
- - [Dataset Curators](#dataset-curators)
47
- - [Licensing Information](#licensing-information)
48
- - [Citation Information](#citation-information)
49
- - [Contributions](#contributions)
50
-
51
- ## Dataset Description
52
-
53
- - **Homepage:**
54
- - **Repository:** https://github.com/lagefreitas/predicting-brazilian-court-decisions
55
- - **Paper:** Lage-Freitas, A., Allende-Cid, H., Santana, O., & Oliveira-Lage, L. (2022). Predicting Brazilian Court
56
- Decisions. PeerJ. Computer Science, 8, e904–e904. https://doi.org/10.7717/peerj-cs.904
57
- - **Leaderboard:**
58
- - **Point of Contact:** [Joel Niklaus](mailto:[email protected])
59
-
60
- ### Dataset Summary
61
-
62
- The dataset is a collection of 4043 *Ementa* (summary) court decisions and their metadata from
63
- the *Tribunal de Justiça de Alagoas* (TJAL, the State Supreme Court of Alagoas (Brazil). The court decisions are labeled
64
- according to 7 categories and whether the decisions were unanimous on the part of the judges or not. The dataset
65
- supports the task of Legal Judgment Prediction.
66
-
67
- ### Supported Tasks and Leaderboards
68
-
69
- Legal Judgment Prediction
70
-
71
- ### Languages
72
-
73
- Brazilian Portuguese
74
-
75
- ## Dataset Structure
76
-
77
- ### Data Instances
78
-
79
- The file format is jsonl and three data splits are present (train, validation and test) for each configuration.
80
-
81
- ### Data Fields
82
-
83
- The dataset contains the following fields:
84
-
85
- - `process_number`: A number assigned to the decision by the court
86
- - `orgao_julgador`: Judging Body: one of '1ª Câmara Cível', '2ª Câmara Cível', '3ª Câmara Cível', 'Câmara Criminal', '
87
- Tribunal Pleno', 'Seção Especializada Cível'
88
- - `publish_date`: The date, when the decision has been published (14/12/2018 - 03/04/2019). At that time (in 2018-2019),
89
- the scraping script was limited and not configurable to get data based on date range. Therefore, only the data from
90
- the last months has been scraped.
91
- - `judge_relator`: Judicial panel
92
- - `ementa_text`: Summary of the court decision
93
- - `decision_description`: **Suggested input**. Corresponds to ementa_text - judgment_text - unanimity_text. Basic
94
- statistics (number of words): mean: 119, median: 88, min: 12, max: 1400
95
- - `judgment_text`: The text used for determining the judgment label
96
- - `judgment_label`: **Primary suggested label**. Labels that can be used to train a model for judgment prediction:
97
- - `no`: The appeal was denied
98
- - `partial`: For partially favourable decisions
99
- - `yes`: For fully favourable decisions
100
- - removed labels (present in the original dataset):
101
- - `conflito-competencia`: Meta-decision. For example, a decision just to tell that Court A should rule this case
102
- and not Court B.
103
- - `not-cognized`: The appeal was not accepted to be judged by the court
104
- - `prejudicada`: The case could not be judged for any impediment such as the appealer died or gave up on the
105
- case for instance.
106
- - `unanimity_text`: Portuguese text to describe whether the decision was unanimous or not.
107
- - `unanimity_label`: **Secondary suggested label**. Unified labels to describe whether the decision was unanimous or
108
- not (in some cases contains ```not_determined```); they can be used for model training as well (Lage-Freitas et al.,
109
- 2019).
110
-
111
- ### Data Splits
112
-
113
- The data has been split randomly into 80% train (3234), 10% validation (404), 10% test (405).
114
-
115
- There are two tasks possible for this dataset.
116
-
117
- #### Judgment
118
- Label Distribution
119
-
120
- | judgment | train | validation | test |
121
- |:----------|---------:|-----------:|--------:|
122
- | no | 1960 | 221 | 234 |
123
- | partial | 677 | 96 | 93 |
124
- | yes | 597 | 87 | 78 |
125
- | **total** | **3234** | **404** | **405** |
126
-
127
- #### Unanimity
128
-
129
- In this configuration, all cases that have `not_determined` as `unanimity_label` can be removed.
130
-
131
- Label Distribution
132
-
133
- | unanimity_label | train | validation | test |
134
- |:-----------------|----------:|---------------:|---------:|
135
- | not_determined | 1519 | 193 | 201 |
136
- | unanimity | 1681 | 205 | 200 |
137
- | not-unanimity | 34 | 6 | 4 |
138
- | **total** | **3234** | **404** | **405** |
139
-
140
- ## Dataset Creation
141
-
142
- ### Curation Rationale
143
-
144
- This dataset was created to further the research on developing models for predicting Brazilian court decisions that are
145
- also able to predict whether the decision will be unanimous.
146
-
147
- ### Source Data
148
-
149
- The data was scraped from *Tribunal de Justiça de Alagoas* (TJAL, the State Supreme Court of Alagoas (Brazil).
150
-
151
- #### Initial Data Collection and Normalization
152
-
153
- *“We developed a Web scraper for collecting data from Brazilian courts. The scraper first searched for the URL that
154
- contains the list of court cases […]. Then, the scraper extracted from these HTML files the specific case URLs and
155
- downloaded their data […]. Next, it extracted the metadata and the contents of legal cases and stored them in a CSV file
156
- format […].”* (Lage-Freitas et al., 2022)
157
-
158
- #### Who are the source language producers?
159
-
160
- The source language producer are presumably attorneys, judges, and other legal professionals.
161
-
162
- ### Annotations
163
-
164
- #### Annotation process
165
-
166
- The dataset was not annotated.
167
-
168
- #### Who are the annotators?
169
-
170
- [More Information Needed]
171
-
172
- ### Personal and Sensitive Information
173
-
174
- The court decisions might contain sensitive information about individuals.
175
-
176
- ## Considerations for Using the Data
177
-
178
- ### Social Impact of Dataset
179
-
180
- [More Information Needed]
181
-
182
- ### Discussion of Biases
183
-
184
- [More Information Needed]
185
-
186
- ### Other Known Limitations
187
-
188
- Note that the information given in this dataset card refer to the dataset version as provided by Joel Niklaus and Veton
189
- Matoshi. The dataset at hand is intended to be part of a bigger benchmark dataset. Creating a benchmark dataset
190
- consisting of several other datasets from different sources requires postprocessing. Therefore, the structure of the
191
- dataset at hand, including the folder structure, may differ considerably from the original dataset. In addition to that,
192
- differences with regard to dataset statistics as give in the respective papers can be expected. The reader is advised to
193
- have a look at the conversion script ```convert_to_hf_dataset.py``` in order to retrace the steps for converting the
194
- original dataset into the present jsonl-format. For further information on the original dataset structure, we refer to
195
- the bibliographical references and the original Github repositories and/or web pages provided in this dataset card.
196
-
197
- ## Additional Information
198
-
199
- Lage-Freitas, A., Allende-Cid, H., Santana Jr, O., & Oliveira-Lage, L. (2019). Predicting Brazilian court decisions:
200
-
201
- - "In Brazil [...] lower court judges decisions might be appealed to Brazilian courts (*Tribiunais de Justiça*) to be
202
- reviewed by second instance court judges. In an appellate court, judges decide together upon a case and their
203
- decisions are compiled in Agreement reports named *Acóordãos*."
204
-
205
- ### Dataset Curators
206
-
207
- The names of the original dataset curators and creators can be found in references given below, in the section *Citation
208
- Information*. Additional changes were made by Joel Niklaus ([Email](mailto:[email protected])
209
- ; [Github](https://github.com/joelniklaus)) and Veton Matoshi ([Email](mailto:[email protected])
210
- ; [Github](https://github.com/kapllan)).
211
-
212
- ### Licensing Information
213
-
214
- No licensing information was provided for this dataset. However, please make sure that you use the dataset according to
215
- Brazilian law.
216
-
217
- ### Citation Information
218
-
219
- ```
220
- @misc{https://doi.org/10.48550/arxiv.1905.10348,
221
- author = {Lage-Freitas, Andr{\'{e}} and Allende-Cid, H{\'{e}}ctor and Santana, Orivaldo and de Oliveira-Lage, L{\'{i}}via},
222
- doi = {10.48550/ARXIV.1905.10348},
223
- keywords = {Computation and Language (cs.CL),FOS: Computer and information sciences,Social and Information Networks (cs.SI)},
224
- publisher = {arXiv},
225
- title = {{Predicting Brazilian court decisions}},
226
- url = {https://arxiv.org/abs/1905.10348},
227
- year = {2019}
228
- }
229
- ```
230
-
231
- ```
232
- @article{Lage-Freitas2022,
233
- author = {Lage-Freitas, Andr{\'{e}} and Allende-Cid, H{\'{e}}ctor and Santana, Orivaldo and Oliveira-Lage, L{\'{i}}via},
234
- doi = {10.7717/peerj-cs.904},
235
- issn = {2376-5992},
236
- journal = {PeerJ. Computer science},
237
- keywords = {Artificial intelligence,Jurimetrics,Law,Legal,Legal NLP,Legal informatics,Legal outcome forecast,Litigation prediction,Machine learning,NLP,Portuguese,Predictive algorithms,judgement prediction},
238
- language = {eng},
239
- month = {mar},
240
- pages = {e904--e904},
241
- publisher = {PeerJ Inc.},
242
- title = {{Predicting Brazilian Court Decisions}},
243
- url = {https://pubmed.ncbi.nlm.nih.gov/35494851 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/},
244
- volume = {8},
245
- year = {2022}
246
- }
247
- ```
248
-
249
- ### Contributions
250
-
251
- Thanks to [@kapllan](https://github.com/kapllan) and [@joelniklaus](https://github.com/joelniklaus) for adding this
252
- dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
convert_to_hf_dataset.py DELETED
@@ -1,132 +0,0 @@
1
- import os
2
-
3
- import numpy as np
4
- import pandas as pd
5
-
6
- """
7
- Dataset url: https://github.com/lagefreitas/predicting-brazilian-court-decisions/blob/main/dataset.zip
8
- Paper url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/
9
-
10
- There are no splits available ==> Make random split ourselves
11
-
12
- """
13
-
14
- pd.set_option('display.max_colwidth', None)
15
- pd.set_option('display.max_columns', None)
16
-
17
-
18
- def perform_original_preprocessing():
19
- # Original Preprocessing from: https://github.com/lagefreitas/predicting-brazilian-court-decisions/blob/main/predicting-brazilian-court-decisions.py#L81
20
- # Loading the labeled decisions
21
- data = pd.read_csv("dataset.csv", sep='<=>', header=0)
22
- print('data.shape=' + str(data.shape) + ' full data set')
23
- # Removing NA values
24
- data = data.dropna(subset=[data.columns[9]]) # decision_description
25
- data = data.dropna(subset=[data.columns[11]]) # decision_label
26
- print('data.shape=' + str(data.shape) + ' dropna')
27
- # Removing duplicated samples
28
- data = data.drop_duplicates(subset=[data.columns[1]]) # process_number
29
- print('data.shape=' + str(data.shape) + ' removed duplicated samples by process_number')
30
- data = data.drop_duplicates(subset=[data.columns[9]]) # decision_description
31
- print('data.shape=' + str(data.shape) + ' removed duplicated samples by decision_description')
32
- # Removing not relevant decision labels and decision not properly labeled
33
- data = data.query('decision_label != "conflito-competencia"')
34
- print('data.shape=' + str(data.shape) + ' removed decisions labeled as conflito-competencia')
35
- data = data.query('decision_label != "prejudicada"')
36
- print('data.shape=' + str(data.shape) + ' removed decisions labeled as prejudicada')
37
- data = data.query('decision_label != "not-cognized"')
38
- print('data.shape=' + str(data.shape) + ' removed decisions labeled as not-cognized')
39
- data_no = data.query('decision_label == "no"')
40
- print('data_no.shape=' + str(data_no.shape))
41
- data_yes = data.query('decision_label == "yes"')
42
- print('data_yes.shape=' + str(data_yes.shape))
43
- data_partial = data.query('decision_label == "partial"')
44
- print('data_partial.shape=' + str(data_partial.shape))
45
- # Merging decisions whose labels are yes, no, and partial to build the final data set
46
- data_merged = data_no.merge(data_yes, how='outer')
47
- data = data_merged.merge(data_partial, how='outer')
48
- print('data.shape=' + str(data.shape) + ' merged decisions whose labels are yes, no, and partial')
49
- # Removing decision_description and decision_labels whose values are -1 and -2
50
- indexNames = data[(data['decision_description'] == str(-1)) | (data['decision_description'] == str(-2)) | (
51
- data['decision_label'] == str(-1)) | (data['decision_label'] == str(-2))].index
52
- data.drop(indexNames, inplace=True)
53
- print('data.shape=' + str(data.shape) + ' removed -1 and -2 decision descriptions and labels')
54
-
55
- data.to_csv("dataset_processed_original.csv", index=False)
56
-
57
-
58
- def perform_additional_processing():
59
- df = pd.read_csv("dataset_processed_original.csv")
60
-
61
- # remove strange " characters sometimes occurring in the beginning and at the end of a line
62
- df.ementa_filepath = df.ementa_filepath.str.replace('^"', '')
63
- df.decision_unanimity = df.decision_unanimity.str.replace('"$', '')
64
-
65
- # removing process_type and judgment_date, since they are the same everywhere (-)
66
- # decisions only contains 'None', nan and '-2'
67
- # ementa_filepath refers to the name of file in the filesystem that we created when we scraped the data from the Court. It is temporary data and can be removed
68
- # decision_description = ementa_text - decision_text - decision_unanimity_text
69
- df = df.drop(['process_type', 'judgment_date', 'decisions', 'ementa_filepath'], axis=1)
70
-
71
- # some rows are somehow not read correctly. With this, we can filter them
72
- df = df[df.decision_text.str.len() > 1]
73
-
74
- # rename "-2" to more descriptive name ==> -2 means, that they were not able to determine it
75
- df.decision_unanimity = df.decision_unanimity.replace('-2', 'not_determined')
76
-
77
- # rename cols for more clarity
78
- df = df.rename(columns={"decision_unanimity": "unanimity_label"})
79
- df = df.rename(columns={"decision_unanimity_text": "unanimity_text"})
80
- df = df.rename(columns={"decision_text": "judgment_text"})
81
- df = df.rename(columns={"decision_label": "judgment_label"})
82
-
83
- df.to_csv("dataset_processed_additional.csv", index=False)
84
-
85
- return df
86
-
87
-
88
- perform_original_preprocessing()
89
- df = perform_additional_processing()
90
-
91
- # perform random split 80% train (3234), 10% validation (404), 10% test (405)
92
- train, validation, test = np.split(df.sample(frac=1, random_state=42), [int(.8 * len(df)), int(.9 * len(df))])
93
-
94
-
95
- def save_splits_to_jsonl(config_name):
96
- # save to jsonl files for huggingface
97
- if config_name: os.makedirs(config_name, exist_ok=True)
98
- train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
99
- validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
100
- test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
101
-
102
-
103
- def print_split_table_single_label(train, validation, test, label_name):
104
- train_counts = train[label_name].value_counts().to_frame().rename(columns={label_name: "train"})
105
- validation_counts = validation[label_name].value_counts().to_frame().rename(columns={label_name: "validation"})
106
- test_counts = test[label_name].value_counts().to_frame().rename(columns={label_name: "test"})
107
-
108
- table = train_counts.join(validation_counts)
109
- table = table.join(test_counts)
110
- table[label_name] = table.index
111
- total_row = {label_name: "total",
112
- "train": len(train.index),
113
- "validation": len(validation.index),
114
- "test": len(test.index)}
115
- table = table.append(total_row, ignore_index=True)
116
- table = table[[label_name, "train", "validation", "test"]] # reorder columns
117
- print(table.to_markdown(index=False))
118
-
119
-
120
- save_splits_to_jsonl("")
121
-
122
- print_split_table_single_label(train, validation, test, "judgment_label")
123
- print_split_table_single_label(train, validation, test, "unanimity_label")
124
-
125
- # create second config by filtering out rows with unanimity label == not_determined, while keeping the same splits
126
- # train = train[train.unanimity_label != "not_determined"]
127
- # validation = validation[validation.unanimity_label != "not_determined"]
128
- # test = test[test.unanimity_label != "not_determined"]
129
-
130
-
131
- # it is a very small dataset and very imbalanced (only very few not-unanimity labels)
132
- # save_splits_to_jsonl("unanimity")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
joelito--brazilian_court_decisions/json-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:032a397b906e1239a490a4366e680076273635376dfac290ad48fc04470df726
3
+ size 412536
joelito--brazilian_court_decisions/json-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c90b12e13f429d3c9bfd0654222f7058f1fa8b0da39ddf44770266394827138
3
+ size 3245400
joelito--brazilian_court_decisions/json-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1853e6118499b34684da635d60214d1228f62cf8cd6f18abf966382e42706b82
3
+ size 425023
test.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
train.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
validation.jsonl DELETED
The diff for this file is too large to render. See raw diff