|
import datasets |
|
import json |
|
import numpy |
|
import torch |
|
|
|
_DESCRIPTION = """\ |
|
Dataset of pre-processed samples from a small portion of the \ |
|
Waymo Open Motion Data for our risk-biased prediction task. |
|
""" |
|
|
|
_CITATION = """\ |
|
@InProceedings{NiMe:2022, |
|
author = {Haruki Nishimura, Jean Mercat, Blake Wulfe, Rowan McAllister}, |
|
title = {RAP: Risk-Aware Prediction for Robust Planning}, |
|
booktitle = {Proceedings of the 2022 IEEE International Conference on Robot Learning (CoRL)}, |
|
month = {December}, |
|
year = {2022}, |
|
address = {Grafton Road, Auckland CBD, Auckland 1010}, |
|
url = {}, |
|
} |
|
""" |
|
|
|
_URL = "./data.json" |
|
|
|
class RiskBiasedDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset of pre-processed samples from a portion of the |
|
Waymo Open Motion Data for the risk-biased prediction task.""" |
|
|
|
VERSION = datasets.Version("0.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="risk_biased_dataset", version=VERSION, description="Dataset of pre-processed samples from a portion of the Waymo Open Motion Data for the risk-biased prediction task."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "risk_biased_dataset" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description= _DESCRIPTION, |
|
features=datasets.Features( |
|
{"x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), |
|
"mask_x": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), |
|
"y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), |
|
"mask_y": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), |
|
"mask_loss": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), |
|
"map_data": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), |
|
"mask_map": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("bool")))), |
|
"offset": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))), |
|
"x_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), |
|
"y_ego": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32"))))), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://sites.google.com/view/corl-risk/home", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = _URL |
|
downloaded_file = dl_manager.download(urls_to_download) |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file, "split": "test"}),] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
assert split == "test" |
|
with open(filepath, "r") as f: |
|
data = json.load(f) |
|
|
|
x = torch.from_numpy(numpy.array(data["x"]).astype(numpy.float32)) |
|
mask_x = torch.from_numpy(numpy.array(data["mask_x"]).astype(numpy.bool8)) |
|
y = torch.from_numpy(numpy.array(data["y"]).astype(numpy.float32)) |
|
mask_y = torch.from_numpy(numpy.array(data["mask_y"]).astype(numpy.bool8)) |
|
mask_loss = torch.from_numpy( numpy.array(data["mask_loss"]).astype(numpy.bool8)) |
|
map_data = torch.from_numpy(numpy.array(data["map_data"]).astype(numpy.float32)) |
|
mask_map = torch.from_numpy(numpy.array(data["mask_map"]).astype(numpy.bool8)) |
|
offset = torch.from_numpy(numpy.array(data["offset"]).astype(numpy.float32)) |
|
x_ego = torch.from_numpy(numpy.array(data["x_ego"]).astype(numpy.float32)) |
|
y_ego = torch.from_numpy(numpy.array(data["y_ego"]).astype(numpy.float32)) |
|
|
|
batch_size = x.shape[0] |
|
|
|
for i in range(batch_size): |
|
|
|
|
|
|
|
|
|
|
|
|
|
yield i, {"x": x[i:i+1], "mask_x": mask_x[i:i+1], |
|
"y": y[i:i+1], "mask_y": mask_y[i:i+1], "mask_loss": mask_loss[i:i+1], |
|
"map_data": map_data[i:i+1], "mask_map": mask_map[i:i+1], |
|
"offset": offset[i:i+1], |
|
"x_ego": x_ego[i:i+1], |
|
"y_ego": y_ego[i:i+1]} |
|
|
|
|
|
|