|
import datetime |
|
from pathlib import Path |
|
from typing import Iterable, Union |
|
import pandas as pd |
|
|
|
|
|
class StockMarketAnalyzer: |
|
def __init__( |
|
self, |
|
market_data: Dict[str, pd.DataFrame], |
|
sector: str = "NASDAQ", |
|
date_col: str = "Date", |
|
price_col: str = "Open", |
|
): |
|
self._market_data = market_data |
|
self._sector = sector |
|
self._date_col = date_col |
|
self._price_col = price_col |
|
|
|
def compute_sector_ratio( |
|
self, date: datetime.datetime, days_before: int = 1, days_after: int = 1 |
|
): |
|
return self.compute_stock_ratio(self._sector, date, days_before, days_after) |
|
|
|
def query(self, company: str, cond: Union[pd.Series, str]): |
|
return self._market_data[company][cond] |
|
|
|
def get_stock_price(self, company: str, date: datetime.datetime) -> float: |
|
stocks = self._market_data[company] |
|
query = stocks[self._date_col] == date |
|
return self.query(company, query)[self._price_col].iloc[0] |
|
|
|
def get_previous_price( |
|
self, company: str, date: datetime.datetime, offset: int = 1 |
|
): |
|
stocks = self._market_data[company] |
|
query = stocks[self._date_col] < date |
|
value = self.query(company, query)[self._price_col].iloc[-offset] |
|
return float(value) |
|
|
|
def get_next_price(self, company: str, date: datetime.datetime, offset: int = 1): |
|
stocks = self._market_data[company] |
|
query = stocks[self._date_col] > date |
|
value = self.query(company, query)[self._price_col].iloc[offset - 1] |
|
return float(value) |
|
|
|
def compute_stock_ratio( |
|
self, |
|
company: str, |
|
date: datetime.datetime, |
|
days_before: int = 1, |
|
days_after: int = 1, |
|
): |
|
before_price = self.get_previous_price(company, date, offset=days_before) |
|
after_price = self.get_next_price(company, date, offset=days_after) |
|
stock_ratio = after_price / before_price |
|
return stock_ratio |
|
|
|
def beats_market( |
|
self, |
|
company: str, |
|
date: datetime.datetime, |
|
days_before: int = 1, |
|
days_after: int = 1, |
|
): |
|
stock_ratio = self.compute_stock_ratio(company, date, days_before, days_after) |
|
sector_ratio = self.compute_sector_ratio(date, days_before, days_after) |
|
|
|
return stock_ratio > sector_ratio |
|
|
|
|
|
def load_stock_prices(files: Iterable[Path]) -> Dict[str, pd.DataFrame]: |
|
""" |
|
Load stock prices from CSV files into a dictionary of DataFrames. |
|
|
|
Args: |
|
files (Iterable[Path]): An iterable of Path objects representing the |
|
CSV files to load. |
|
|
|
Returns: |
|
Dict[str, pd.DataFrame]: A dictionary where the keys are the company names |
|
(extracted from the file names) and the values are pandas DataFrames |
|
containing the stock prices for each company. |
|
""" |
|
|
|
market_data = {} |
|
|
|
for f in files: |
|
path = f.as_posix() |
|
company = f.stem |
|
market_data[company] = pd.read_csv( |
|
path, usecols=["Date", "Open"], parse_dates=["Date"] |
|
) |
|
|
|
return market_data |
|
|