File size: 7,014 Bytes
ae9c66b e01c5e8 ae9c66b 751787a ae9c66b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
# Copyright 2021 Phonetics and Speech Laboratory, Trinity College, Dublin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import os
from pathlib import Path
import datasets
from bs4 import BeautifulSoup
import requests
_DESCRIPTION = """\
Foinse was an Irish-language magazine site.
This script uses a list of articles retrieved from the
Wayback Machine to build a corpus
"""
_DATA_URL = "https://huggingface.co/datasets/jimregan/foinse/raw/main/urls.txt"
class FoinseDataset(datasets.GeneratorBasedBuilder):
"""Scraper dataset for Foinse."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="documents", version=VERSION, description="Plain text portion of the corpus: whole documents"),
datasets.BuilderConfig(name="paragraphs", version=VERSION, description="Plain text portion of the corpus: paragraphs"),
]
def _info(self):
features = datasets.Features(
{
"title": datasets.Value("string"),
"url": datasets.Value("string"),
"author": datasets.Value("string"),
"date_text": datasets.Value("string"),
"text": datasets.Value("string"),
"category": datasets.Value("string"),
"subcategory": datasets.Value("string"),
"summary": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_path = dl_manager.download(_DATA_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"data_file": dl_path
},
),
]
def _generate_examples(
self, split, data_file
):
""" Yields examples as (key, example) tuples. """
links = _get_links(data_file)
_id = 1
for url in links:
content = get_content(url)
paras = content.get("text", [])
if self.config.name == "documents":
paras = ['\n'.join(paras)]
for para in paras:
yield _id, {
"title": content.get("title", ""),
"url": url,
"author": content.get("author", ""),
"date_text": content.get("published", ""),
"category": content.get("category", ""),
"subcategory": content.get("subcategory", ""),
"summary": content.get("summary", ""),
"text": para
}
_id += 1
def get_content(url):
out = {}
page = requests.get(url)
if page.status_code != 200:
return {}
page_content = page.text
soup = BeautifulSoup(page_content, "lxml")
content = soup.find("div", {"class": "item-page"})
if not content:
content = soup.find("div", {"id": "ja-main"})
if not content:
return {}
breadcrumbs = soup.find("div", {"class": "ja-breadcrums"})
if breadcrumbs:
here = breadcrumbs.find("a", {"class": "pathway"})
if not here:
here = breadcrumbs.find("span", {"class": "pathway"})
if here:
out["category"] = here.text.strip()
# junk
jc = content.find("div", {"id": "jc"})
if jc:
jc.extract()
pagenav = content.find("ul", {"class": "pagenav"})
if pagenav:
pagenav.extract()
for js in content.find_all("script", {"type": "text/javascript"}):
js.extract()
h2 = content.find("h2")
if h2:
title = h2.text.strip()
if title:
out["title"] = title
h2.extract()
h1 = content.find("h1")
if h1:
heading = h1.text.strip()
if heading:
out["subcategory"] = heading
h1.extract()
published_tag = content.find("dd", {"class": "published"})
if not published_tag:
published_tag = content.find("span", {"class": "createdate"})
if published_tag:
out["published"] = published_tag.text.strip()
author_tag = content.find("dd", {"class": "createdby"})
if not author_tag:
author_tag = content.find("span", {"class": "createby"})
if author_tag:
out["author"] = author_tag.text.strip()
artinfo = content.find("dl", {"class": "article-info"})
if not artinfo:
artinfo = content.find("div", {"class": "article-meta"})
if artinfo:
artinfo.extract()
paragraphs_tags = content.find_all("p")
paragraphs = [p.text.replace("\xa0", " ").strip() for p in paragraphs_tags]
out["text"] = paragraphs
raw_text = content.text
raw_out = []
for raw_line in raw_text.split("\n"):
line = raw_line.replace("\xa0", " ").strip()
if line == "":
continue
raw_out.append(line)
if paragraphs != raw_out:
out["text"] = raw_out
summary = extract_summary(out["text"])
if summary:
out["summary"] = summary
out["text"] = filter_para_list(out["text"])
vocab_list = []
for vocab in content.find_all("a", {"class": "glossarylink"}):
item = {}
item["en"] = vocab.get("title").strip()
item["ga"] = vocab.text.strip()
vocab_list.append(item)
out["vocab"] = vocab_list
return out
def extract_summary(inlist):
if len(inlist) > 2:
if inlist[-2] == "Did you understand this story? Here are the main points:":
return inlist[-1]
return ""
def filter_para_list(inlist):
out = []
for para in inlist:
if para == "":
continue
elif para.strip() == "Foinse - News as Gaeilge":
return out
elif para.strip() == "Did you understand this story? Here are the main points:":
return out
else:
out.append(para)
return out
def _get_links(scrape):
links = set()
if not os.path.exists(scrape):
raise Exception(f"File {scrape} does not exist")
with open(scrape) as f:
for url in f.readlines():
links.add(url.rstrip())
return list(links)
|