jigarsiddhpura commited on
Commit
4aec081
·
verified ·
1 Parent(s): dd76b09

dataset uploaded by roboflow2huggingface package

Browse files
1.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ tiny-people-detection-rpi_dataset,
12
+ title = { Tiny people detection RPI Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { ResQ },
15
+ howpublished = { \\url{ https://universe.roboflow.com/resq/tiny-people-detection-rpi } },
16
+ url = { https://universe.roboflow.com/resq/tiny-people-detection-rpi },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2023 },
20
+ month = { sep },
21
+ note = { visited on 2024-02-11 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['dry-person', 'object', 'wet-swimmer']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class 1Config(datasets.BuilderConfig):
29
+ """Builder Config for 1"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for 1.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(1Config, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class 1(datasets.GeneratorBasedBuilder):
44
+ """1 object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ 1Config(
49
+ name="full",
50
+ description="Full version of 1 dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ 1Config(
58
+ name="mini",
59
+ description="Mini version of 1 dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
IPD.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ tiny-people-detection-rpi_dataset,
12
+ title = { Tiny people detection RPI Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { ResQ },
15
+ howpublished = { \\url{ https://universe.roboflow.com/resq/tiny-people-detection-rpi } },
16
+ url = { https://universe.roboflow.com/resq/tiny-people-detection-rpi },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2023 },
20
+ month = { sep },
21
+ note = { visited on 2024-02-11 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['dry-person', 'object', 'wet-swimmer']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class IPDConfig(datasets.BuilderConfig):
29
+ """Builder Config for IPD"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for IPD.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(IPDConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class IPD(datasets.GeneratorBasedBuilder):
44
+ """IPD object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ IPDConfig(
49
+ name="full",
50
+ description="Full version of IPD dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ IPDConfig(
58
+ name="mini",
59
+ description="Mini version of IPD dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
README.dataset.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Tiny people detection RPI > 2023-09-18 2:46pm
2
+ https://universe.roboflow.com/resq/tiny-people-detection-rpi
3
+
4
+ Provided by a Roboflow user
5
+ License: CC BY 4.0
6
+
README.md CHANGED
@@ -1,3 +1,99 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+
8
  ---
9
+
10
+ <div align="center">
11
+ <img width="640" alt="jigarsiddhpura/IPD" src="https://huggingface.co/datasets/jigarsiddhpura/IPD/resolve/main/thumbnail.jpg">
12
+ </div>
13
+
14
+ ### Dataset Labels
15
+
16
+ ```
17
+ ['dry-person', 'object', 'wet-swimmer']
18
+ ```
19
+
20
+
21
+ ### Number of Images
22
+
23
+ ```json
24
+ {'test': 77, 'valid': 153, 'train': 1608}
25
+ ```
26
+
27
+
28
+ ### How to Use
29
+
30
+ - Install [datasets](https://pypi.org/project/datasets/):
31
+
32
+ ```bash
33
+ pip install datasets
34
+ ```
35
+
36
+ - Load the dataset:
37
+
38
+ ```python
39
+ from datasets import load_dataset
40
+
41
+ ds = load_dataset("jigarsiddhpura/IPD", name="full")
42
+ example = ds['train'][0]
43
+ ```
44
+
45
+ ### Roboflow Dataset Page
46
+ [https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1](https://universe.roboflow.com/resq/tiny-people-detection-rpi/dataset/1?ref=roboflow2huggingface)
47
+
48
+ ### Citation
49
+
50
+ ```
51
+ @misc{ tiny-people-detection-rpi_dataset,
52
+ title = { Tiny people detection RPI Dataset },
53
+ type = { Open Source Dataset },
54
+ author = { ResQ },
55
+ howpublished = { \\url{ https://universe.roboflow.com/resq/tiny-people-detection-rpi } },
56
+ url = { https://universe.roboflow.com/resq/tiny-people-detection-rpi },
57
+ journal = { Roboflow Universe },
58
+ publisher = { Roboflow },
59
+ year = { 2023 },
60
+ month = { sep },
61
+ note = { visited on 2024-02-11 },
62
+ }
63
+ ```
64
+
65
+ ### License
66
+ CC BY 4.0
67
+
68
+ ### Dataset Summary
69
+ This dataset was exported via roboflow.com on February 10, 2024 at 7:28 AM GMT
70
+
71
+ Roboflow is an end-to-end computer vision platform that helps you
72
+ * collaborate with your team on computer vision projects
73
+ * collect & organize images
74
+ * understand and search unstructured image data
75
+ * annotate, and create datasets
76
+ * export, train, and deploy computer vision models
77
+ * use active learning to improve your dataset over time
78
+
79
+ For state of the art Computer Vision training notebooks you can use with this dataset,
80
+ visit https://github.com/roboflow/notebooks
81
+
82
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
83
+
84
+ The dataset includes 1838 images.
85
+ People are annotated in COCO format.
86
+
87
+ The following pre-processing was applied to each image:
88
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
89
+ * Resize to 640x640 (Stretch)
90
+
91
+ The following augmentation was applied to create 3 versions of each source image:
92
+ * Randomly crop between 0 and 67 percent of the image
93
+ * Salt and pepper noise was applied to 4 percent of pixels
94
+
95
+ The following transformations were applied to the bounding boxes of each image:
96
+ * Random shear of between -5° to +5° horizontally and -5° to +5° vertically
97
+
98
+
99
+
README.roboflow.txt ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Tiny people detection RPI - v1 2023-09-18 2:46pm
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on February 10, 2024 at 7:28 AM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand and search unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ For state of the art Computer Vision training notebooks you can use with this dataset,
16
+ visit https://github.com/roboflow/notebooks
17
+
18
+ To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com
19
+
20
+ The dataset includes 1838 images.
21
+ People are annotated in COCO format.
22
+
23
+ The following pre-processing was applied to each image:
24
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
25
+ * Resize to 640x640 (Stretch)
26
+
27
+ The following augmentation was applied to create 3 versions of each source image:
28
+ * Randomly crop between 0 and 67 percent of the image
29
+ * Salt and pepper noise was applied to 4 percent of pixels
30
+
31
+ The following transformations were applied to the bounding boxes of each image:
32
+ * Random shear of between -5° to +5° horizontally and -5° to +5° vertically
33
+
34
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f44cdbea63c96de55dd8021934f7ea3fbcdbb0a4bda1d9bc88580735eb5dd7
3
+ size 4127096
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d810bdb566f98adc9b49a426631f4de3c1b6d9681d0f11e6ef4a2e81b2a3705b
3
+ size 151530133
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2f4ab3b157155d3f0d3a1bebe2e2a97dbfd7108e0c920b82ba21f897e0836d6
3
+ size 107726
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf4e7e7063d9ed2d5c6374aff041aa59b58f2a2f848a46631f8ed9a755474d21
3
+ size 8233286
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"test": 77, "valid": 153, "train": 1608}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: 7b6e1e4ac70a5527f18eec6b856aef3bf7bff56bbe49ce093de9c5deb795d0b4
  • Pointer size: 131 Bytes
  • Size of remote file: 164 kB