jherng commited on
Commit
b3137bb
·
1 Parent(s): f8e890c

Update rsna-2023-abdominal-trauma-detection.py

Browse files
Files changed (1) hide show
  1. rsna-2023-abdominal-trauma-detection.py +213 -343
rsna-2023-abdominal-trauma-detection.py CHANGED
@@ -1,408 +1,278 @@
1
- import urllib
2
- import numpy as np
3
- import pandas as pd
4
- import datasets
5
- from sklearn.model_selection import train_test_split
6
 
 
 
 
7
 
8
  _CITATION = """\
9
- @InProceedings{huggingface:dataset,
10
- title = {RSNA 2023 Abdominal Trauma Detection Dataset},
11
- author={Hong Jia Herng},
12
- year={2023}
13
- }
14
- @misc{rsna-2023-abdominal-trauma-detection,
15
- author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
16
- title = {RSNA 2023 Abdominal Trauma Detection},
17
- publisher = {Kaggle},
18
- year = {2023},
19
- url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
20
  }
21
  """
22
 
23
  _DESCRIPTION = """\
24
- This dataset is the preprocessed version of the dataset from RSNA 2023 Abdominal Trauma Detection Kaggle Competition.
25
- It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
26
- - segmentation: 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
27
- - classification: 4711 instances where each instance includes a CT scan in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
28
- - classification-with-mask: 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels (e.g., extravasation, bowel, kidney, liver, spleen, any_injury), and its relevant metadata (e.g., patient_id, series_id, incomplete_organ, aortic_hu, pixel_representation, bits_allocated, bits_stored)
29
-
30
- All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
31
  """
32
 
33
- _NAME = "rsna-2023-abdominal-trauma-detection"
34
 
35
  _HOMEPAGE = f"https://huggingface.co/datasets/jherng/{_NAME}"
36
 
37
  _LICENSE = "MIT"
38
 
39
- _URL = f"https://huggingface.co/datasets/jherng/{_NAME}/resolve/main/"
40
 
41
 
42
- class RSNA2023AbdominalTraumaDetectionConfig(datasets.BuilderConfig):
43
  def __init__(self, **kwargs):
44
- self.test_size = kwargs.pop("test_size", 0.1)
45
- self.random_state = kwargs.pop("random_state", 42)
46
- super(RSNA2023AbdominalTraumaDetectionConfig, self).__init__(**kwargs)
47
-
 
48
 
49
- class RSNA2023AbdominalTraumaDetection(datasets.GeneratorBasedBuilder):
50
- VERSION = datasets.Version("1.0.0")
51
 
 
52
  BUILDER_CONFIGS = [
53
- RSNA2023AbdominalTraumaDetectionConfig(
54
- name="segmentation",
55
- version=VERSION,
56
- description="This part of the dataset loads the CT scans, segmentation masks, and metadata.",
57
- ),
58
- RSNA2023AbdominalTraumaDetectionConfig(
59
- name="classification",
60
- version=VERSION,
61
- description="This part of the dataset loads the CT scans, target labels, and metadata.",
62
  ),
63
- RSNA2023AbdominalTraumaDetectionConfig(
64
- name="classification-with-mask",
65
- version=VERSION,
66
- description="This part of the dataset loads the CT scans, segmentation masks, target labels, and metadata.",
67
  ),
68
  ]
69
 
70
- DEFAULT_CONFIG_NAME = "classification" # It's not mandatory to have a default configuration. Just use one if it make sense.
71
- BUILDER_CONFIG_CLASS = RSNA2023AbdominalTraumaDetectionConfig
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  def _info(self):
74
- if self.config.name == "segmentation":
75
  features = datasets.Features(
76
  {
77
- "img_path": datasets.Value("string"),
78
- "seg_path": datasets.Value("string"),
79
- "metadata": {
80
- "series_id": datasets.Value("int32"),
81
- "patient_id": datasets.Value("int32"),
82
- "incomplete_organ": datasets.Value("bool"),
83
- "aortic_hu": datasets.Value("float32"),
84
- "pixel_representation": datasets.Value("int32"),
85
- "bits_allocated": datasets.Value("int32"),
86
- "bits_stored": datasets.Value("int32"),
87
- },
88
- }
89
- )
90
- elif self.config.name == "classification-with-mask":
91
- features = datasets.Features(
92
- {
93
- "img_path": datasets.Value("string"),
94
- "seg_path": datasets.Value("string"),
95
- "bowel": datasets.ClassLabel(
96
- num_classes=2, names=["healthy", "injury"]
97
  ),
98
- "extravasation": datasets.ClassLabel(
99
- num_classes=2, names=["healthy", "injury"]
100
  ),
101
- "kidney": datasets.ClassLabel(
102
- num_classes=3, names=["healthy", "low", "high"]
 
 
 
 
 
 
 
 
 
 
103
  ),
104
- "liver": datasets.ClassLabel(
105
- num_classes=3, names=["healthy", "low", "high"]
 
 
 
106
  ),
107
- "spleen": datasets.ClassLabel(
108
- num_classes=3, names=["healthy", "low", "high"]
109
- ),
110
- "any_injury": datasets.Value("bool"),
111
- "metadata": {
112
- "series_id": datasets.Value("int32"),
113
- "patient_id": datasets.Value("int32"),
114
- "incomplete_organ": datasets.Value("bool"),
115
- "aortic_hu": datasets.Value("float32"),
116
- "pixel_representation": datasets.Value("int32"),
117
- "bits_allocated": datasets.Value("int32"),
118
- "bits_stored": datasets.Value("int32"),
119
- },
120
  }
121
  )
122
-
123
- else:
124
  features = datasets.Features(
125
  {
126
- "img_path": datasets.Value("string"),
127
- "bowel": datasets.ClassLabel(
128
- num_classes=2, names=["healthy", "injury"]
 
129
  ),
130
- "extravasation": datasets.ClassLabel(
131
- num_classes=2, names=["healthy", "injury"]
 
 
 
 
 
 
 
 
 
 
132
  ),
133
- "kidney": datasets.ClassLabel(
134
- num_classes=3, names=["healthy", "low", "high"]
 
 
 
135
  ),
136
- "liver": datasets.ClassLabel(
137
- num_classes=3, names=["healthy", "low", "high"]
138
- ),
139
- "spleen": datasets.ClassLabel(
140
- num_classes=3, names=["healthy", "low", "high"]
141
- ),
142
- "any_injury": datasets.Value("bool"),
143
- "metadata": {
144
- "series_id": datasets.Value("int32"),
145
- "patient_id": datasets.Value("int32"),
146
- "incomplete_organ": datasets.Value("bool"),
147
- "aortic_hu": datasets.Value("float32"),
148
- "pixel_representation": datasets.Value("int32"),
149
- "bits_allocated": datasets.Value("int32"),
150
- "bits_stored": datasets.Value("int32"),
151
- },
152
  }
153
  )
154
 
155
  return datasets.DatasetInfo(
156
- description=_DESCRIPTION,
157
  features=features,
 
158
  homepage=_HOMEPAGE,
159
  license=_LICENSE,
160
  citation=_CITATION,
161
  )
162
 
163
  def _split_generators(self, dl_manager):
164
- # segmentation: 206 segmentations and the relevant imgs, train_series_meta.csv, train_dicom_tags.parquet
165
- # classification: 4711 all imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
166
- # classification-with-mask: 206 segmentations and the relevant imgs, train.csv, train_series_meta.csv, train_dicom_tags.parquet
167
- series_meta_df = pd.read_csv(
168
- dl_manager.download_and_extract(
169
- urllib.parse.urljoin(_URL, "train_series_meta.csv")
170
- )
171
- )
172
- series_meta_df["img_download_url"] = series_meta_df.apply(
173
- lambda x: urllib.parse.urljoin(
174
- _URL,
175
- f"train_images/{int(x['patient_id'])}/{int(x['series_id'])}.nii.gz",
176
- ),
177
- axis=1,
178
- )
179
- series_meta_df["seg_download_url"] = series_meta_df.apply(
180
- lambda x: urllib.parse.urljoin(
181
- _URL, f"segmentations/{int(x['series_id'])}.nii.gz"
182
- ),
183
- axis=1,
184
- )
185
- if (
186
- self.config.name == "classification-with-mask"
187
- or self.config.name == "segmentation"
188
- ):
189
- series_meta_df = series_meta_df.loc[series_meta_df["has_segmentation"] == 1]
190
-
191
- series_meta_df["img_cache_path"] = dl_manager.download(
192
- series_meta_df["img_download_url"].tolist()
193
- )
194
- series_meta_df["seg_cache_path"] = dl_manager.download(
195
- series_meta_df["seg_download_url"].tolist()
196
- )
197
-
198
  else:
199
- series_meta_df["img_cache_path"] = dl_manager.download(
200
- series_meta_df["img_download_url"].tolist()
 
 
 
 
 
 
 
 
 
 
 
201
  )
202
- series_meta_df["seg_cache_path"] = None
203
 
204
- dicom_tags_df = datasets.load_dataset(
205
- "parquet", data_files=urllib.parse.urljoin(_URL, "train_dicom_tags.parquet")
206
- )["train"].to_pandas()[
207
- [
208
- "SeriesInstanceUID",
209
- "PixelRepresentation",
210
- "BitsAllocated",
211
- "BitsStored",
212
- ]
213
- ]
214
- dicom_tags_df["SeriesID"] = dicom_tags_df["SeriesInstanceUID"].apply(
215
- lambda x: int(x.split(".")[-1])
216
- )
217
- dicom_tags_df = dicom_tags_df.drop(labels=["SeriesInstanceUID"], axis=1)
218
- dicom_tags_df = dicom_tags_df.groupby(by=["SeriesID"], as_index=False).first()
219
- dicom_tags_df = dicom_tags_df.rename(
220
- columns={
221
- "SeriesID": "series_id",
222
- "PixelRepresentation": "pixel_representation",
223
- "BitsAllocated": "bits_allocated",
224
- "BitsStored": "bits_stored",
 
 
 
 
 
 
 
 
 
225
  }
226
- )
227
- series_meta_df = pd.merge(
228
- left=series_meta_df, right=dicom_tags_df, how="inner", on="series_id"
229
- )
230
 
231
- self.labels_df = (
232
- pd.read_csv(
233
- dl_manager.download_and_extract(urllib.parse.urljoin(_URL, "train.csv"))
234
- )
235
- if self.config.name != "segmentation"
236
- else None
237
- )
238
 
239
- train_series_meta_df, test_series_meta_df = train_test_split(
240
- series_meta_df, test_size=self.config.test_size, random_state=self.config.random_state, shuffle=True
241
- )
 
 
242
 
243
- return [
244
- datasets.SplitGenerator(
245
- name=datasets.Split.TRAIN,
246
- gen_kwargs={
247
- "filepaths": train_series_meta_df[
248
- [
249
- "series_id",
250
- "patient_id",
251
- "img_cache_path",
252
- "seg_cache_path",
253
- "incomplete_organ",
254
- "aortic_hu",
255
- "pixel_representation",
256
- "bits_allocated",
257
- "bits_stored",
258
- ]
259
- ].to_dict("records"),
260
- },
261
- ),
262
- datasets.SplitGenerator(
263
- name=datasets.Split.TEST,
264
- gen_kwargs={
265
- "filepaths": test_series_meta_df[
266
- [
267
- "series_id",
268
- "patient_id",
269
- "img_cache_path",
270
- "seg_cache_path",
271
- "incomplete_organ",
272
- "aortic_hu",
273
- "pixel_representation",
274
- "bits_allocated",
275
- "bits_stored",
276
- ]
277
- ].to_dict("records"),
278
- },
279
- ),
280
- ]
281
 
282
  def _generate_examples(
283
- self,
284
- filepaths,
285
  ):
286
- if self.config.name == "segmentation":
287
- for key, series_meta in enumerate(filepaths):
288
- yield key, {
289
- "img_path": series_meta["img_cache_path"],
290
- "seg_path": series_meta["seg_cache_path"],
291
- "metadata": {
292
- "series_id": series_meta["series_id"],
293
- "patient_id": series_meta["patient_id"],
294
- "incomplete_organ": series_meta["incomplete_organ"],
295
- "aortic_hu": series_meta["aortic_hu"],
296
- "pixel_representation": series_meta["pixel_representation"],
297
- "bits_allocated": series_meta["bits_allocated"],
298
- "bits_stored": series_meta["bits_stored"],
299
- },
300
- }
301
 
302
- elif self.config.name == "classification-with-mask":
303
- for key, series_meta in enumerate(filepaths):
304
- label_data = (
305
- self.labels_df.loc[
306
- self.labels_df["patient_id"] == series_meta["patient_id"]
307
- ]
308
- .iloc[0]
309
- .to_dict()
310
- )
311
 
312
- yield key, {
313
- "img_path": series_meta["img_cache_path"],
314
- "seg_path": series_meta["seg_cache_path"],
315
- "bowel": np.argmax(
316
- [label_data["bowel_healthy"], label_data["bowel_injury"]]
317
- ),
318
- "extravasation": np.argmax(
319
- [
320
- label_data["extravasation_healthy"],
321
- label_data["extravasation_injury"],
322
- ]
323
- ),
324
- "kidney": np.argmax(
325
- [
326
- label_data["kidney_healthy"],
327
- label_data["kidney_low"],
328
- label_data["kidney_high"],
329
- ]
330
- ),
331
- "liver": np.argmax(
332
- [
333
- label_data["liver_healthy"],
334
- label_data["liver_low"],
335
- label_data["liver_high"],
336
- ]
337
- ),
338
- "spleen": np.argmax(
339
- [
340
- label_data["spleen_healthy"],
341
- label_data["spleen_low"],
342
- label_data["spleen_high"],
343
- ]
344
- ),
345
- "any_injury": label_data["any_injury"],
346
- "metadata": {
347
- "series_id": series_meta["series_id"],
348
- "patient_id": series_meta["patient_id"],
349
- "incomplete_organ": series_meta["incomplete_organ"],
350
- "aortic_hu": series_meta["aortic_hu"],
351
- "pixel_representation": series_meta["pixel_representation"],
352
- "bits_allocated": series_meta["bits_allocated"],
353
- "bits_stored": series_meta["bits_stored"],
354
  },
355
- }
356
- else:
357
- for key, series_meta in enumerate(filepaths):
358
- label_data = (
359
- self.labels_df.loc[
360
- self.labels_df["patient_id"] == series_meta["patient_id"]
361
- ]
362
- .iloc[0]
363
- .to_dict()
364
  )
365
 
366
- yield key, {
367
- "img_path": series_meta["img_cache_path"],
368
- "bowel": np.argmax(
369
- [label_data["bowel_healthy"], label_data["bowel_injury"]]
370
- ),
371
- "extravasation": np.argmax(
372
- [
373
- label_data["extravasation_healthy"],
374
- label_data["extravasation_injury"],
375
- ]
376
- ),
377
- "kidney": np.argmax(
378
- [
379
- label_data["kidney_healthy"],
380
- label_data["kidney_low"],
381
- label_data["kidney_high"],
382
- ]
383
- ),
384
- "liver": np.argmax(
385
- [
386
- label_data["liver_healthy"],
387
- label_data["liver_low"],
388
- label_data["liver_high"],
389
- ]
390
- ),
391
- "spleen": np.argmax(
392
- [
393
- label_data["spleen_healthy"],
394
- label_data["spleen_low"],
395
- label_data["spleen_high"],
396
- ]
397
- ),
398
- "any_injury": label_data["any_injury"],
399
- "metadata": {
400
- "series_id": series_meta["series_id"],
401
- "patient_id": series_meta["patient_id"],
402
- "incomplete_organ": series_meta["incomplete_organ"],
403
- "aortic_hu": series_meta["aortic_hu"],
404
- "pixel_representation": series_meta["pixel_representation"],
405
- "bits_allocated": series_meta["bits_allocated"],
406
- "bits_stored": series_meta["bits_stored"],
407
- },
408
- }
 
1
+ import urllib.parse
 
 
 
 
2
 
3
+ import datasets
4
+ import pandas as pd
5
+ import requests
6
 
7
  _CITATION = """\
8
+ @inproceedings{Wu2020not,
9
+ title={Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision},
10
+ author={Wu, Peng and Liu, jing and Shi, Yujia and Sun, Yujia and Shao, Fangtao and Wu, Zhaoyang and Yang, Zhiwei},
11
+ booktitle={European Conference on Computer Vision (ECCV)},
12
+ year={2020}
 
 
 
 
 
 
13
  }
14
  """
15
 
16
  _DESCRIPTION = """\
17
+ Dataset for the paper "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision". \
18
+ The dataset is downloaded from the authors' website (https://roc-ng.github.io/XD-Violence/). Hosting this dataset on HuggingFace \
19
+ is just to make it easier for my own project to use this dataset. Please cite the original paper if you use this dataset.
 
 
 
 
20
  """
21
 
22
+ _NAME = "xd-violence"
23
 
24
  _HOMEPAGE = f"https://huggingface.co/datasets/jherng/{_NAME}"
25
 
26
  _LICENSE = "MIT"
27
 
28
+ _URL = f"https://huggingface.co/datasets/jherng/{_NAME}/resolve/main/data/"
29
 
30
 
31
+ class XDViolenceConfig(datasets.BuilderConfig):
32
  def __init__(self, **kwargs):
33
+ """BuilderConfig for XD-Violence.
34
+ Args:
35
+ **kwargs: keyword arguments forwarded to super.
36
+ """
37
+ super(XDViolenceConfig, self).__init__(**kwargs)
38
 
 
 
39
 
40
+ class XDViolence(datasets.GeneratorBasedBuilder):
41
  BUILDER_CONFIGS = [
42
+ XDViolenceConfig(
43
+ name="video",
44
+ description="Video dataset",
 
 
 
 
 
 
45
  ),
46
+ XDViolenceConfig(
47
+ name="rgb",
48
+ description="RGB visual features of the video dataset",
 
49
  ),
50
  ]
51
 
52
+ DEFAULT_CONFIG_NAME = "video"
53
+ BUILDER_CONFIG_CLASS = XDViolenceConfig
54
+
55
+ CODE2LABEL = {
56
+ "A": "Normal",
57
+ "B1": "Fighting",
58
+ "B2": "Shooting",
59
+ "B4": "Riot",
60
+ "B5": "Abuse",
61
+ "B6": "Car accident",
62
+ "G": "Explosion",
63
+ }
64
+
65
+ LABEL2IDX = {
66
+ "Normal": 0,
67
+ "Fighting": 1,
68
+ "Shooting": 2,
69
+ "Riot": 3,
70
+ "Abuse": 4,
71
+ "Car accident": 5,
72
+ "Explosion": 6,
73
+ }
74
 
75
  def _info(self):
76
+ if self.config.name == "rgb":
77
  features = datasets.Features(
78
  {
79
+ "id": datasets.Value("string"),
80
+ "rgb_feats": datasets.Array3D(
81
+ shape=(None, 5, 2048),
82
+ dtype="float32", # (num_frames, num_crops, feature_dim) use 5 crops by default as of now
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  ),
84
+ "binary_target": datasets.ClassLabel(
85
+ names=["Non-violence", "Violence"]
86
  ),
87
+ "multilabel_target": datasets.Sequence(
88
+ datasets.ClassLabel(
89
+ names=[
90
+ "Normal",
91
+ "Fighting",
92
+ "Shooting",
93
+ "Riot",
94
+ "Abuse",
95
+ "Car accident",
96
+ "Explosion",
97
+ ]
98
+ )
99
  ),
100
+ "frame_annotations": datasets.Sequence(
101
+ {
102
+ "start": datasets.Value("int32"),
103
+ "end": datasets.Value("int32"),
104
+ }
105
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  }
107
  )
108
+ else: # default = "video"
 
109
  features = datasets.Features(
110
  {
111
+ "id": datasets.Value("string"),
112
+ "path": datasets.Value("string"),
113
+ "binary_target": datasets.ClassLabel(
114
+ names=["Non-violence", "Violence"]
115
  ),
116
+ "multilabel_target": datasets.Sequence(
117
+ datasets.ClassLabel(
118
+ names=[
119
+ "Normal",
120
+ "Fighting",
121
+ "Shooting",
122
+ "Riot",
123
+ "Abuse",
124
+ "Car accident",
125
+ "Explosion",
126
+ ]
127
+ )
128
  ),
129
+ "frame_annotations": datasets.Sequence(
130
+ {
131
+ "start": datasets.Value("int32"),
132
+ "end": datasets.Value("int32"),
133
+ }
134
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  }
136
  )
137
 
138
  return datasets.DatasetInfo(
 
139
  features=features,
140
+ description=_DESCRIPTION,
141
  homepage=_HOMEPAGE,
142
  license=_LICENSE,
143
  citation=_CITATION,
144
  )
145
 
146
  def _split_generators(self, dl_manager):
147
+ if self.config.name == "rgb":
148
+ raise NotImplementedError("rgb not implemented yet")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
  else:
150
+ # Download train and test list files
151
+ list_paths = {
152
+ "train": dl_manager.download_and_extract(
153
+ urllib.parse.urljoin(_URL, "train_list.txt")
154
+ ),
155
+ "test": dl_manager.download_and_extract(
156
+ urllib.parse.urljoin(_URL, "test_list.txt")
157
+ ),
158
+ }
159
+
160
+ # Download test annotation file
161
+ annotation_path = dl_manager.download_and_extract(
162
+ urllib.parse.urljoin(_URL, "test_annotations.txt")
163
  )
 
164
 
165
+ # Download videos
166
+ video_urls = {
167
+ "train": pd.read_csv(
168
+ list_paths["train"],
169
+ header=None,
170
+ sep=" ",
171
+ usecols=[0],
172
+ names=["id"],
173
+ )["id"]
174
+ .apply(
175
+ lambda x: urllib.parse.quote(
176
+ urllib.parse.urljoin(_URL, f"video/{x.split('.mp4')[0]}.mp4"),
177
+ safe=":/",
178
+ )
179
+ )
180
+ .to_list(),
181
+ "test": pd.read_csv(
182
+ list_paths["test"],
183
+ header=None,
184
+ sep=" ",
185
+ usecols=[0],
186
+ names=["id"],
187
+ )["id"]
188
+ .apply(
189
+ lambda x: urllib.parse.quote(
190
+ urllib.parse.urljoin(_URL, f"video/{x.split('.mp4')[0]}.mp4"),
191
+ safe=":/",
192
+ )
193
+ )
194
+ .to_list(),
195
  }
 
 
 
 
196
 
197
+ video_paths = {
198
+ "train": dl_manager.download(video_urls["train"]),
199
+ "test": dl_manager.download(video_urls["test"]),
200
+ }
 
 
 
201
 
202
+ # Function to read annotations
203
+ annotation_readers = {
204
+ "train": self._read_list,
205
+ "test": self._read_test_annotations,
206
+ }
207
 
208
+ return [
209
+ datasets.SplitGenerator(
210
+ name=datasets.Split.TRAIN,
211
+ gen_kwargs={
212
+ "list_path": list_paths["train"],
213
+ "frame_annotation_path": None,
214
+ "video_paths": video_paths["train"],
215
+ "annotation_reader": annotation_readers["train"],
216
+ },
217
+ ),
218
+ datasets.SplitGenerator(
219
+ name=datasets.Split.TEST,
220
+ gen_kwargs={
221
+ "list_path": list_paths["test"],
222
+ "frame_annotation_path": annotation_path,
223
+ "video_paths": video_paths["test"],
224
+ "annotation_reader": annotation_readers["test"],
225
+ },
226
+ ),
227
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
 
229
  def _generate_examples(
230
+ self, list_path, frame_annotation_path, video_paths, annotation_reader
 
231
  ):
232
+ if self.config.name == "rgb":
233
+ raise NotImplementedError("rgb not implemented yet")
234
+ else:
235
+ ann_data = annotation_reader(list_path, frame_annotation_path)
 
 
 
 
 
 
 
 
 
 
 
236
 
237
+ for key, (path, annotation) in enumerate(zip(video_paths, ann_data)):
238
+ id = annotation["id"]
239
+ binary = annotation["binary_target"]
240
+ multilabel = annotation["multilabel_target"]
241
+ frame_annotations = annotation.get("frame_annotations", [])
 
 
 
 
242
 
243
+ yield (
244
+ key,
245
+ {
246
+ "id": id,
247
+ "path": path,
248
+ "binary_target": binary,
249
+ "multilabel_target": multilabel,
250
+ "frame_annotations": frame_annotations,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
  },
 
 
 
 
 
 
 
 
 
252
  )
253
 
254
+ @staticmethod
255
+ def _read_list(list_path, frame_annotation_path):
256
+ file_list = pd.read_csv(
257
+ list_path, header=None, sep=" ", usecols=[0], names=["id"]
258
+ )
259
+ file_list["id"] = file_list["id"].apply(
260
+ lambda x: x.split("/")[1].split(".mp4")[0]
261
+ )
262
+ file_list["binary_target"], file_list["multilabel_target"] = zip(
263
+ *file_list["id"].apply(XDViolence._extract_labels)
264
+ )
265
+
266
+ return file_list.to_dict("records")
267
+
268
+ @classmethod
269
+ def _extract_labels(cls, video_id):
270
+ """Extracts labels from the video id."""
271
+ codes = video_id.split("_")[-1].split(".mp4")[0].split("-")
272
+
273
+ binary = 1 if len(codes) > 1 else 0
274
+ multilabel = [
275
+ cls.LABEL2IDX[cls.CODE2LABEL[code]] for code in codes if code != "0"
276
+ ]
277
+
278
+ return binary, multilabel