jglaser commited on
Commit
85bd2ca
·
1 Parent(s): 5225bab

normalize affinities

Browse files
Files changed (2) hide show
  1. combine_dbs.ipynb +67 -6
  2. data/all.parquet +2 -2
combine_dbs.ipynb CHANGED
@@ -1368,7 +1368,7 @@
1368
  },
1369
  {
1370
  "cell_type": "code",
1371
- "execution_count": 3,
1372
  "id": "4e2d89f7-f6ea-41de-a13b-4a184b4fd580",
1373
  "metadata": {},
1374
  "outputs": [],
@@ -1388,7 +1388,68 @@
1388
  },
1389
  {
1390
  "cell_type": "code",
1391
- "execution_count": 9,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392
  "id": "c6c64066-4032-4247-a8b9-00388176cc7b",
1393
  "metadata": {},
1394
  "outputs": [],
@@ -1398,13 +1459,13 @@
1398
  },
1399
  {
1400
  "cell_type": "code",
1401
- "execution_count": 10,
1402
  "id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
1403
  "metadata": {},
1404
  "outputs": [
1405
  {
1406
  "data": {
1407
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAf0UlEQVR4nO3df5QcVZ338feHRB5iRkFEBkmQoMZ1WSNqRoLCkRkVTwAfgisqGIGg2Rg1Ij7RNYoiP2TFo3FFBWM2YkTB8QcGsyaCLDiiC+yG+IMBBIxJ0CRARDAyEMGB7/NH1YSi0z1T3dNTXTP5vM7pM111763+zkzPfPveqrpXEYGZmVkeu7U6ADMzGz2cNMzMLDcnDTMzy81Jw8zMcnPSMDOz3Ma3OoCRts8++8SUKVMaavvwww8zceLE5gbURGWPDxxjM5Q9Pih/jGWPD8oV49q1a++PiOdULYyIMf2YPn16NOqnP/1pw22LUPb4IhxjM5Q9vojyx1j2+CLKFSNwc9T4n+rhKTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyc9IwM7PcnDTMzCw3Jw0zM8ttzE8jYmPHlEWrdjzfeMGxLYzEbNflnoaZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrkVnjQkzZR0p6R1khZVKZ8l6RZJv5Z0s6Qj8rY1M7ORVWjSkDQOuAg4GjgYOEnSwRXVrgUOiYiXAe8EltXR1szMRlDRPY1DgXURsT4iHgO6gVnZChHRFxGRbk4EIm9bMzMbWXry/3MBLyadAMyMiLnp9snAjIhYUFHvTcCngX2BYyPixrxt07J5wDyA9vb26d3d3Q3F29fXR1tbW0Nti1D2+KC5MfZu3rbj+bRJezblmFD+n2PZ44Pyx1j2+KBcMXZ1da2NiI5qZUUv96oq+3bKWhGxAlgh6TXAecDr87ZN2y8FlgJ0dHREZ2dnQ8H29PTQaNsilD0+aG6Mc7LLvc5uzjGh/D/HsscH5Y+x7PHB6IgRih+e2gQckNmeDGypVTkirgdeIGmfetua5dW7eRtTFq16yhrkZlZd0UljDTBV0kGSdgdOBFZmK0h6oSSlz18B7A78OU9bMzMbWYUOT0VEv6QFwNXAOOCSiLhN0vy0fAnwZuAUSX8HtgNvS0+MV21bZPxmZru6os9pEBGrgdUV+5Zknn8G+EzetmZmVhzfEW5mZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuRV+9ZTZWJW9OXDjBce2MBKzkeOehpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWW+FJQ9JMSXdKWidpUZXy2ZJuSR83SDokU7ZRUq+kX0u6udjIzcys0JX7JI0DLgKOAjYBayStjIjbM9U2AEdGxIOSjgaWAjMy5V0RcX9hQZuZ2Q5F9zQOBdZFxPqIeAzoBmZlK0TEDRHxYLp5EzC54BjNzKwGRURxLyadAMyMiLnp9snAjIhYUKP+h4AXZ+pvAB4EAvhqRCyt0W4eMA+gvb19end3d0Px9vX10dbW1lDbIpQ9PmhujL2bt+14Pm3Snk05JsDWB7Zx3/bhH3ek4tvVfs8joezxQbli7OrqWhsRHdXKCh2eAlRlX9WsJakLeBdwRGb34RGxRdK+wDWS7oiI63c6YJJMlgJ0dHREZ2dnQ8H29PTQaNsilD0+aG6Mcxat2vF84+zmHBPgS5f9kMW944d93JGKb1f7PY+EsscHoyNGKH54ahNwQGZ7MrClspKklwLLgFkR8eeB/RGxJf26FVhBMtxlZmYFKbqnsQaYKukgYDNwIvD2bAVJzwN+AJwcEXdl9k8EdouIh9LnbwDOLSxyswZNyfZALji2hZGYDV+hSSMi+iUtAK4GxgGXRMRtkuan5UuAs4BnAxdLAuhPx9bagRXpvvHA5RFxVZHxm5nt6oruaRARq4HVFfuWZJ7PBeZWabceOKRyv5mZFcd3hJuZWW5OGmZmlpuThpmZ5eakYWZmudWVNCQdNVKBmJlZ+dXb07g6nZ32w5KeMyIRmZlZadWbNF5LcoPeecAfJV0u6cjmh2XWelMWrdrxMLNEXUkjInoi4iRgEvAJoAP4qaTfSvqApGeNRJBmZlYODd3cl84H9Vngs5JeB5wNfB74tKTvAosjordpUZoVxL0Ks8EN6+opSccApwOHAVuBS4EjgV9Kes/wwzMzszKpO2lI2k/SmenaFj8C9gLeARwQEfOBFwJfJZlDyszMxpB6L7m9Argb+FeS+aOmRcSREfGdiOgHiIjHgctJJhg0s2GYsmgVvZu3edjMSqPecxpTgTOAb0ZE3yD1eoGuRoMyM7NyqjdpvBG4JyL+XlkgaTywf0T8ISIeAn7WjADNzKw86k0aG4BXAf9bpeyQdP+44QZlVmZeVMl2ZfWeCK+2xveApwFPDCMWMzMruSF7GpL2AvbO7Jok6fkV1SYApwL3Ni80s3z8yd+sOHmGpz4AfBKI9PH9GvWU1jMzszEqT9K4EthIkhQuAT4F/L6izqPA7RFxSzODMzOzchkyaUTEb4DfAEgKYFVE3D/SgZmZWfnUdfVURHxjpAIxM7Pyy3Mi/DrgvRFxR/p8MBERr2tOaGZmVjZ5ehrZy2x3IzkZnqeu2ZjhaTzMEnnOaXRlnncO9wUlzQQuJLkJcFlEXFBRPhv4SLrZB7wnPa8yZFszMxtZDa2n0ShJ44CLgKOATcAaSSsj4vZMtQ3AkRHxoKSjgaXAjJxtzUqh3p6J7zWx0SLPOY3X1HPAiLh+kOJDgXURsT49djcwC9jxjz8ibsjUvwmYnLet2WjiIS8bjRQx2CkKkPQEg5/H2FGV5ER4zbmnJJ0AzIyIuen2ycCMiFhQo/6HgBdHxNx62kqaB8wDaG9vn97d3Z0j/J319fXR1tbWUNsilD0+aG6MvZu37Xg+bdKeQ+7Pa+sD27hve2Mx1YpjOPUr67RPgPu2N/a9FaXs78WyxwflirGrq2ttRHRUK8szPNXMKc6rnSivmpAkdQHvAo6ot21ELCUZ1qKjoyM6OzvrDhSgp6eHRtsWoezxQXNjnJMdwpndOeT+vL502Q9Z3NvYSG2tOGrqfTizUf01K4+5cFo/i3vHN/S9FaXs78WyxwejI0bIdyK8mVOcbwIOyGxPBrZUVpL0UmAZcHS6HnnutmZmNnIKPREOrAGmSjoI2AycCLw9W0HS84AfACdHxF31tDXLKuLkss9L2K6m0Jv7IqJf0gLgapLLZi+JiNskzU/Ll5CsLf5s4GJJAP0R0VGrbY7v0czMmqTwm/siYjXJ+uLZfUsyz+cCc/O2NTOz4hR+c5+ZmY1e9a7cZ2Zmu7C6T4SnK/l9kGSt8EkkJ6VvAL4QEX9pZnBmZlYudfU0JB0C/A74KLAHyd3YewAfA+6SNK3pEZqZWWnU29P4IvBnoCMi7h7YKWkKcBXwJaCzWcGZmVm51Js0Xgmcmk0YABGxUdInga83LTKzBvi+CbORVe+J8D+TrAdezd/ScjMzG6PqTRpfAT4saY/sTkkTgA+RTF1uZmZjVJ47ws/NbgIHAn+QtBq4D2gHjgG2A08fiSDNzKwc8pzT+HiN/adU2XcmyTQgZmY2BuW5I9w3AJqZGVD8LLdm1gReHtZaxb0IMzPLre6kIWmepF9JekTS45WPkQjSzMzKod5pRE4huet7Dcn0IV8HvgX8Ffg9cG7t1mZmNtrV29M4A/g08J50++KIOBV4Psklt765z8xsDKv3RPhU4HrgifSxO0BEPCjpfOB84MtNjdCsCQabXmShp9k0y63ensZ2YLeICOBekh7GgD5g/2YFZmZm5VNvT6MXeCHwX8DPgY9J2gD0A2cDdzQ1OrMaPDGhWWvUmzSW8mTv4hMkyeMX6fZDwPHNCcvMzMqorqQREd/JPF8n6Z+AVwMTgBsi4v4mx2dmZiUyrDvCI+Jh4JomxWJmZiXXyBrh40gmK6xcI/ybETHkzX2SZgIXAuOAZRFxQUX5i0nu/3gFcGZEfC5TtpFkGOxxoD8iOuqN36zsfL7GyqyupCHpQOBq4EXAJpKp0acBc4GPSJpZuapfRftxJGtuHJW2XyNpZUTcnqn2AHA6tc+PdHkYzMysNertaXwZeCZwRETcMLBT0uHA90juFj9ukPaHAusiYn3arhuYBexIGhGxFdgqybOwmWW4B2JloOSWi5yVpYeB90bEN6qUzQG+HBFtg7Q/AZgZEXPT7ZOBGRGxoErds4G+iuGpDcCDQABfjYilNV5nHjAPoL29fXp3d3fu7zGrr6+Ptraa307LlT0+aG6MvZu3NeU4ldonwH3bR+TQTTFUfNMm7VlcMDWU/b1Y9vigXDF2dXWtrTX8X29Pow/YWqNsK/DIEO1VZV/+rAWHR8QWSfsC10i6IyKu3+mASTJZCtDR0RGdnZ11vMSTenp6aLRtEcoc38Cn4oXTHuf9b+xsyjHnjNAn7YXT+lncW95VAoaKb+PszuKCqaHM70Uof3wwOmKE+u8I/xYwv0bZu4FLh2i/CTggsz0Z2JL3xSNiS/p1K7CCZLjLzMwKkmeN8HdmNn8HvEVSL3AFT64RfgLwDODHQxxuDTBV0kEkV12dCLw9T6CSJpJMYfJQ+vwNeFZdM7NC5emTL6uybzLwT1X2XwQsqXWgiOiXtIDkCqxxwCURcZuk+Wn5Ekn7ATeTnHB/QtIZwMHAPsAKSQNxXx4RV+WI38zMmiRP0jiomS8YEauB1RX7lmSe30uSlCr9FTikmbFY8bxMqdnoNmTSGOy+C7NmqXU5qROLWbk0dMmIpJcARwJ7kyy8dH1E3NrMwMzMrHzqvSN8PLAcOImnXj4bki4H5uSZSsTMzEanei+5/STwVuAsknMdE9KvZwFvS7+amdkYVe/w1DuA8yLi/My+u4Hz03mlTiNJLGZmNgbV29PYH7ixRtkNeLlXM7Mxrd6ksQU4vEbZq6nj7m4zMxt96h2eugw4U9IT6fN7gP1I7uw+E/hMc8MzM7MyqTdpnE2yRvg56fMBAr6d7jczszGq3jXC+4G3SzofeA3JfRoPAD+rWEjJzMzGoNxJQ9LuwL0k92KsBG4bsajMrCGepsVGWu4T4RHxGNAP/G3kwjEzszKr9+qpK0mmQTczs11QvSfCfwx8UdL3SRLIPVSsvBcR1zUnNDPLw2uHW5HqTRpXpF//OX0MCJIrqIJknQyzpvA/RLNyqTdpdI1IFGZmNirUe8ntzwAkPRN4CTCJZNnWWyPir80Pz8zMyqTu9TQknQUsBNp4ckiqT9JnI+JTTY7PzMxKpN71NM4BPkGybng3cB/QTrK+xjmSxkfE2c0O0szMyqHensa/AIsj4sOZfbcB10naBszjqdOLmJnZGFLvfRp7AlfXKLsqLTczszGq3qTxP8Ara5S9Mi03M7Mxqt7hqdOBFZL6ge/x5DmNtwLvBGZJ2pGIIuKJZgVqZmatV29P4xbgBcAFwO+BvvTrp9P9vcDf08dj1Q4gaaakOyWtk7SoSvmLJd0o6VFJH6qnrZmZjax6exrnUjFtSD3SdcQvAo4CNgFrJK2smFb9AZIezfENtDUzsxFU7819Zw/z9Q4F1kXEegBJ3cAsYMc//ojYCmyVVDmv85BtzWxonj7dhkMRDXcc6n8x6QRgZkTMTbdPBmZExIIqdc8G+iLicw20nUdy+S/t7e3Tu7u7G4q3r6+Ptra2htoWoczx9W7eBkD7BNh37z132l8m7RPgvu2tjqK2RuObNqn6xYzZ30GtOvUq83sRyh8flCvGrq6utRHRUa2s7jvCh0lV9uXNWrnbRsRSYClAR0dHdHZ25nyJp+rp6aHRtkUoc3xz0k+zC6f189ZMjHNKOAHhwmn9LO4t+k8hv0bj2zi7s+r+7O+gVp16lfm9COWPD0ZHjFD/ifDh2gQckNmeDGwpoK2ZmTVB0UljDTBV0kHp8rEnAisLaGtmZk1QaJ88IvolLSC5q3wccElE3CZpflq+RNJ+wM3AM4EnJJ0BHBwRf63Wtsj4zcx2dYUP5EbEamB1xb4lmef3kgw95WprZmbFKXp4yszMRjEnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyK++EOzZmTCnhfFNm1hj3NMzMLDcnDTMzy81Jw8zMcnPSMDOz3Hwi3GyM8rKuNhLc0zAzs9ycNMzMLDcPT5ntAnyvjDWLexpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5Vb4JbeSZgIXAuOAZRFxQUW50vJjgEeAORHxy7RsI/AQ8DjQHxEdBYZuNub4rnGrV6FJQ9I44CLgKGATsEbSyoi4PVPtaGBq+pgBfCX9OqArIu4vKGQzM8soenjqUGBdRKyPiMeAbmBWRZ1ZwKWRuAnYS9JzC47TzMyqUEQU92LSCcDMiJibbp8MzIiIBZk6PwIuiIhfpNvXAh+JiJslbQAeBAL4akQsrfE684B5AO3t7dO7u7sbirevr4+2traG2hahzPH1bt4GQPsEuG97i4MZQtljbFV80ybtmbtumd+LUP74oFwxdnV1ra01/F/0OQ1V2VeZtQarc3hEbJG0L3CNpDsi4vqdKifJZClAR0dHdHZ2NhRsT08PjbYtQpnjm5OOlS+c1s/i3nLPVlP2GFsV38bZnbnrlvm9COWPD0ZHjFD88NQm4IDM9mRgS946ETHwdSuwgmS4y8zMClJ00lgDTJV0kKTdgROBlRV1VgKnKHEYsC0i7pE0UdIzACRNBN4A3Fpk8GZmu7pC+7wR0S9pAXA1ySW3l0TEbZLmp+VLgNUkl9uuI7nk9rS0eTuwIrkil/HA5RFxVZHxm5nt6gofKI2I1SSJIbtvSeZ5AO+r0m49cMiIB2h18XX+ZrsW3xFuZma5lfeSESstL+hjtuty0rCmcTIxG/ucNMysKp+vsmp8TsPMzHJzT8PMhuRehw1wT8PMzHJz0jAzs9ycNMzMLDef07BcfDmtmYGThlXwCU8zG4yHp8zMLDcnDTMzy83DU2bWsCmZFRo7WxuKFcQ9DTMzy809DTOri6+k27W5p2FmZrk5aZiZWW5OGmZmlpvPaVhNHrs2s0pOGmbWFLU+ZHhmgbHFw1NmZpabexqj1JRFq1g4rZ85i1bl/iRXa14pD0PZSMrz/nJvZPQoPGlImglcCIwDlkXEBRXlSsuPAR4B5kTEL/O0tfwTDjpRWFl50sxyKzRpSBoHXAQcBWwC1khaGRG3Z6odDUxNHzOArwAzcrbdJdVKAE4MNlr4vTp6FN3TOBRYFxHrASR1A7OA7D/+WcClERHATZL2kvRcYEqOtk3Vu3kbc9I3c55PPB7+MWuuev92av2d1vu3bLUVnTQmAX/MbG8i6U0MVWdSzrYASJoHzEs3+yTd2WC8+wD3A+gz9TWst34jTs/EV1aOcfjKHh+UJ8ZB/u4a/lsuUCl+hqkDaxUUnTRUZV/krJOnbbIzYimwtL7Qdibp5ojoGO5xRkrZ4wPH2Axljw/KH2PZ44PRESMUnzQ2AQdkticDW3LW2T1HWzMzG0FF36exBpgq6SBJuwMnAisr6qwETlHiMGBbRNyTs62ZmY2gQnsaEdEvaQFwNclls5dExG2S5qflS4DVJJfbriO55Pa0wdqOcMjDHuIaYWWPDxxjM5Q9Pih/jGWPD0ZHjCi5SMnMzGxonkbEzMxyc9IwM7PcnDSqkDRT0p2S1kla1Op4Kkk6QNJPJf1W0m2SPtDqmKqRNE7SryT9qNWxVJPeOPp9SXekP8tXtTqmSpI+mP6Ob5X0bUl7tDieSyRtlXRrZt/ekq6R9Lv067NKGONn09/zLZJWSNqrhSFWjTFT9iFJIWmfVsQ2FCeNCpnpSo4GDgZOknRwa6PaST+wMCL+ETgMeF8JYwT4APDbVgcxiAuBqyLixcAhlCxWSZOA04GOiHgJyQUgJ7Y2KpYDMyv2LQKujYipwLXpdistZ+cYrwFeEhEvBe4CPlp0UBWWs3OMSDqAZKqkPxQdUF5OGjvbMdVJRDwGDExXUhoRcc/AJI4R8RDJP7tJrY3qqSRNBo4FlrU6lmokPRN4DfA1gIh4LCL+0tKgqhsPTJA0Hng6Lb43KSKuBx6o2D0L+Eb6/BvA8UXGVKlajBHxk4joTzdvIrnPq2Vq/BwB/h34V2rcuFwGTho7qzWNSSlJmgK8HPifFodS6Qskb/4nWhxHLc8H/gR8PR1CWyZpYquDyoqIzcDnSD513kNyz9JPWhtVVe3pvVSkX/dtcTxDeSfw41YHUUnSccDmiPhNq2MZjJPGznJPV9JqktqAK4AzIuKvrY5ngKQ3AlsjYm2rYxnEeOAVwFci4uXAw7R+WOUp0nMDs4CDgP2BiZLe0dqoRjdJZ5IM717W6liyJD0dOBM4q9WxDMVJY2d5pjppOUlPI0kYl0XED1odT4XDgeMkbSQZ3nutpG+1NqSdbAI2RcRAD+37JEmkTF4PbIiIP0XE34EfAK9ucUzV3JfORE36dWuL46lK0qnAG4HZUb4b1F5A8uHgN+nfzWTgl5L2a2lUVThp7Kz005WkC1V9DfhtRHy+1fFUioiPRsTkiJhC8vO7LiJK9Qk5Iu4F/ijpH9Jdr2MEp9lv0B+AwyQ9Pf2dv46SnaxPrQROTZ+fCvywhbFUlS7g9hHguIh4pNXxVIqI3ojYNyKmpH83m4BXpO/TUnHSqJCeLBuYruS3wHcLmK6kXocDJ5N8gv91+jim1UGNQu8HLpN0C/Ay4N9aG85Tpb2g7wO/BHpJ/l5bOtWEpG8DNwL/IGmTpHcBFwBHSfodyZU/LV1Rs0aMXwaeAVyT/r0sKWGMo4KnETEzs9zc0zAzs9ycNMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDSkXS2ZLG5M1Dkt6ZrjnxmKS/DLa/0Z9DtXaSjpf0/xqMeXm6tkNI6qkom5Mpe1GVtp2Z8ten+z6e2bepkZistZw0zAogaX+Su7lvAF5LMq9Uzf0kU8o3sihUtXbHAw0ljdS96THfW6P8IZIZCiqdkpZlfT091uphxGMtNL7VAZjtIqaSLKL0jYj4xVD7I2ITyfxDdWm03RAejYibBin/AfAOSWcNTAQoaQLwZpJJNedk4tsMbJb0pybHaAVxT8NGBSVL8N4oabukbZKuzEw2mK13Urqs598k9Uo6TlJP5dBKk2N7oaRvStqQxrde0lcGlj2VtBwYeP1r06GZ5bX2p22eMsw0sC1pqqRVkvok3S3pLEm7VdbLbC8nmURwUmZYaKOkE9Lnh1T5fnok3VjHj+CbwIHAEZl9byJJhlfUcRwbBdzTsNJLZyhdBVwHvA1oA84FfiHpZemnVyQdRbJOwkpgIbAPyWJQe5As8TlS9if5dH8G8CDJAk8fIxmCeRVwHrAW+CLwPpIJCAc+adfaX8sKkiGefwf+L3AOyaJhX69R/zzgOcArgePSfY+STIC4BXg3mWGnNBEfCZw2RBxZdwPXkwxR/Tzdd0oaa18dx7FRwEnDRoNPAeuBoweW7Ew/Cd9FkhwGxuvPIZne/E2ZYZJekn/MI5Y00qU7rx/YlnQDsA74uaSXR8SvJA1MaX57dqin1v5BLI6IgQTxX5JeC5xEjaQREb9Ph4Ieqzy+pP8APijpwxHxcLr73cBfgO/kiCXrUmCxpNOBZ5Gcmzm6zmPYKODhKWsJJcZnHzXqTSRZHOk7mTWeiYgNwH+TfCpG0jigA7giu8BOupb6hopjfkzSnZKekHR8RdkLJP1C0l1KloHtyPG97J4e8w5J24G/8+Qn7p2G0IZpVcX2rcDzGjzWUpJ1x08CkLQHyVDWpRGxvc5jfQ/4PyS9n9kkJ8+vbTAuKzEnDWuVI0n+uWYf1TyLZAnee6qU3QvsnT7fB3ga1VeNu69i+1rgGDK9g4wlwPKIeBHJGueXSaq2BHDWp4GzgW8BxwKHAv+clu0xRNt6PVCx/WijrxERW0gWTJqf7noLyc/zqw0c6yHgSpIhqlNIVpQs6/rwNgwenrJWWUsyzj6UB0nWaK+27OV+wJ/T5/eTJJ59q9RrJ1kFD9ixuBGVuUDSc4DDSBIKEXFNWmc6cPMgMZ5I8un8U5ljtQ1Sv0wuJjkJP51kaOrnEdHoCoaXkvSEdiPtvdjY456GtUREPBQRN2cfNeo9TJJg3pIOQQEg6UCS9bJ/ltZ7nOQf+5uzPYP0n+FBOcN6HrAlXY97wN0MPfzzdHbuKdVzInmkPQpMqFYQEdeRrFD5eZIVIYezot01wHeBJSVc7dKaxD0NGw0+QfIJ9keSLia5euocYBuwOFPvk8BPgBWSlpIMWZ1NMozV6FDJUENTAFcBp6Yn3deRDE29usHXGwm3A3tLeg9JYv1bRPRmypcAF5L01hq+RDZN3O5hjHHuaVjpRcRVJOcK9iL9JEvy6fiIdFx+oN41JCdh/5Hkcs+PkFxddS9JghnKH4D9JT0ts+9AMkNbNbyf5DLf80muOnoG5frnuQzoJlkD/X+B/6wo/176dXlEPFpkYDb6eI1wG9MkTSb59H9+RJxXUdYDfCEirszsuxbojoj/SO/7uBh4UYzhPxRJ/0Jy8vtFEbGuomw50Am8EIi0NzGc1xLJTX9fA14XEZOHczwrnnsaNmZImpDeif1mSUdKOo1knP0Rkk/bA/U+nk6W9ypgmaRNkgZOtM8HTpN0F/BZYPZYTRiSDpY0cIPglZUJI+NAknM2zbiE9sz0WKc04VjWAu5p2JghaXeS4aHDgGcDD5PcL/GxiLi1lbGVUdrTejXJZIlvzw71ZepMITk3BPBQRNw5zNd8LjAp3XwsIm4ZzvGseE4aZmaWm4enzMwsNycNMzPLzUnDzMxyc9IwM7PcnDTMzCw3Jw0zM8vNScPMzHL7//EcGfA6+lWVAAAAAElFTkSuQmCC\n",
1408
  "text/plain": [
1409
  "<Figure size 432x288 with 1 Axes>"
1410
  ]
@@ -1416,8 +1477,8 @@
1416
  }
1417
  ],
1418
  "source": [
1419
- "ax = df['neg_log10_affinity_M'].hist(bins=100,density=True)\n",
1420
- "ax.set_xlabel('-$\\log_{10}$ affinity[M]',fontsize=16)\n",
1421
  "ax.set_ylabel('probability',fontsize=16)\n",
1422
  "ax.figure.savefig('affinity.pdf')"
1423
  ]
 
1368
  },
1369
  {
1370
  "cell_type": "code",
1371
+ "execution_count": 12,
1372
  "id": "4e2d89f7-f6ea-41de-a13b-4a184b4fd580",
1373
  "metadata": {},
1374
  "outputs": [],
 
1388
  },
1389
  {
1390
  "cell_type": "code",
1391
+ "execution_count": 13,
1392
+ "id": "8f949038-d07d-4d3a-a47e-b825cc9018ca",
1393
+ "metadata": {},
1394
+ "outputs": [],
1395
+ "source": [
1396
+ "from sklearn.preprocessing import StandardScaler"
1397
+ ]
1398
+ },
1399
+ {
1400
+ "cell_type": "code",
1401
+ "execution_count": 14,
1402
+ "id": "0c027988-0b44-4010-ad61-7d70eead1654",
1403
+ "metadata": {},
1404
+ "outputs": [],
1405
+ "source": [
1406
+ "scaler = StandardScaler()"
1407
+ ]
1408
+ },
1409
+ {
1410
+ "cell_type": "code",
1411
+ "execution_count": 22,
1412
+ "id": "6aeba020-b6ff-4633-902e-4df74463eb2f",
1413
+ "metadata": {},
1414
+ "outputs": [],
1415
+ "source": [
1416
+ "df['affinity'] = scaler.fit_transform(df['neg_log10_affinity_M'].values.reshape(-1,1))"
1417
+ ]
1418
+ },
1419
+ {
1420
+ "cell_type": "code",
1421
+ "execution_count": 31,
1422
+ "id": "91196eee-5fd0-4aa4-927a-5c1a3f436ac8",
1423
+ "metadata": {},
1424
+ "outputs": [
1425
+ {
1426
+ "data": {
1427
+ "text/plain": [
1428
+ "(array([6.49685099]), array([2.43570803]))"
1429
+ ]
1430
+ },
1431
+ "execution_count": 31,
1432
+ "metadata": {},
1433
+ "output_type": "execute_result"
1434
+ }
1435
+ ],
1436
+ "source": [
1437
+ "scaler.mean_, scaler.var_"
1438
+ ]
1439
+ },
1440
+ {
1441
+ "cell_type": "code",
1442
+ "execution_count": 24,
1443
+ "id": "9be91c11-1c58-47de-8ebb-99c25cfc3c55",
1444
+ "metadata": {},
1445
+ "outputs": [],
1446
+ "source": [
1447
+ "df = df.drop(columns=['level_0','index'])"
1448
+ ]
1449
+ },
1450
+ {
1451
+ "cell_type": "code",
1452
+ "execution_count": 26,
1453
  "id": "c6c64066-4032-4247-a8b9-00388176cc7b",
1454
  "metadata": {},
1455
  "outputs": [],
 
1459
  },
1460
  {
1461
  "cell_type": "code",
1462
+ "execution_count": 28,
1463
  "id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
1464
  "metadata": {},
1465
  "outputs": [
1466
  {
1467
  "data": {
1468
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAELCAYAAAAybErdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZX0lEQVR4nO3dfZRdVXnH8e/PACU1Bdpih5KkJJasKjVayxh8QZhRqQFZxtq0BpEXLY3RRqULbBFqiCIVlwtrK2CapYiIdIqgNIUo1eqIFqkJr2OCaAygCSAVbGAQX8Y8/eOcSY733Dtzz8y959w79/dZa9bcc86efZ+dmcwze+9z9lZEYGZmlvW0qgMwM7PO4+RgZmY5Tg5mZpbj5GBmZjlODmZmlrNP1QG0wsEHHxwLFixoaZ1PPvkkT3/601taZ7dw23uz7dDb7e/Ftt92220/iohn1Ls2I5LDggUL2Lx5c0vrHB4eZmBgoKV1dgu3faDqMCrTy+3vxbZLeqDRNQ8rmZlZjpODmZnlODmYmVmOk4OZmeU4OZiZWY6Tg5mZ5Tg5mJlZjpODmZnlODmYmVnOjHhC2maWBefcuOf1/Re9qsJIzHqXew5mZpZTenKQtFTSvZK2STqnzvUBSbsk3Zl+rCk7RjOzXlfqsJKkWcClwHHADmCTpA0RsbWm6Nci4sQyYzMzs73K7jksAbZFxPaI+DkwBCwrOQYzM5uEIqK8N5OWA0sj4oz0+BTgqIhYnSkzAFxH0rN4EDg7IrbUqWslsBKgr6/vyKGhoZbGOjo6ypw5c1paZ7eouu0jO3fteb147oGlvnfVba9aL7e/F9s+ODh4W0T017tW9t1KqnOuNjvdDhwWEaOSTgCuBxblvihiPbAeoL+/P1q9Dnsvru0+ruq2n569W+nkcuOouu1V6+X293Lb6yl7WGkHMD9zPI+kd7BHRDweEaPp643AvpIOLi9EMzMrOzlsAhZJWihpP2AFsCFbQNIhkpS+XpLG+GjJcZqZ9bRSh5UiYkzSauAmYBZweURskbQqvb4OWA68RdIY8BSwIsqcGDEzs/KfkE6HijbWnFuXeX0JcEnZcZmZ2V5+QtrMzHKcHMzMLMfJwczMcpwczMwsx8nBzMxynBzMzCzHycHMzHKcHMzMLMfJwczMcryHtPUE70ttVox7DmZmluPkYGZmOU4OZmaW4+RgZmY5Tg5mZpbj5GBmZjlODmZmluPkYGZmOX4IzqwAP0xnvcI9BzMzy3FyMDOzHCcHMzPLcXIwM7McJwczM8txcjAzsxwnBzMzy3FyMDOzHCcHMzPLcXIwM7McJwczM8txcjAzs5zSk4OkpZLulbRN0jkTlHuBpF9KWl5mfGZmVnJykDQLuBQ4HjgCOEnSEQ3KfQC4qcz4zMwsUXbPYQmwLSK2R8TPgSFgWZ1ybwOuAx4pMzgzM0soIsp7s2SIaGlEnJEenwIcFRGrM2XmAlcDLwM+DtwQEdfWqWslsBKgr6/vyKGhoZbGOjo6ypw5c1paZ7eouu0jO3fteb147oGl1jlZ29sRWyep+ntfpV5s++Dg4G0R0V/vWtmb/ajOudrs9GHg7yLil1K94ukXRawH1gP09/fHwMBAi0JMDA8P0+o6u0XVbT89u6HOya2Jo9k6J2t7O2LrJFV/76vUy22vp+zksAOYnzmeBzxYU6YfGEoTw8HACZLGIuL6UiI0M7PSk8MmYJGkhcBOYAXw+myBiFg4/lrSFSTDSteXGKOZWc8rNTlExJik1SR3Ic0CLo+ILZJWpdfXlRmPmZnVV3bPgYjYCGysOVc3KUTE6WXEZGZmv8pPSJuZWU7pPQezmWpB9k6mi15VYSRm0+eeg5mZ5Tg5mJlZjpODmZnlODmYmVmOk4OZmeU4OZiZWU6h5CDpuHYFYmZmnaNoz+GmdAe3d0p6RlsiMjOzyhVNDi8jWTzvAuAHkq6WdGzrwzIrx4JzbtzzYWZ7FUoOETEcEScBc4F3kyyv/RVJ90h6h6TfbEeQZmZWriktnxERjwIfBD4o6eXAWuBDwPslXQNcHBEjLYvSrIXcSzCb3LTuVpJ0AvB24IUk+z1fCRwL3C7pLdMPz8zMqlA4OUg6RNJ5ku4DbgAOAt4AzI+IVcDhwL8Aa1oZqJmZlafQsJKk64ATgZ8CVwGXRcSWbJl07+ergbe2LEqzGc4rulqnKTrnsAg4E/hURIxOUG4EGJxqUGZmVq2iyeFE4KGI+EXtBUn7AIdGxPcj4gngq60I0MzMylc0OdwHvAj4Zp1rz0vPz5puUGZV8zCP9bqiE9Ka4Nq+wO5pxGJmZh1i0p6DpIOA38qcmivpmTXFZgOnAQ+3LjSzX+W/5s3K08yw0juA84FIP65tUE5pOTMz63LNJIfrgftJfvlfDrwP+F5NmZ8BWyPi7lYGZ2Zm1Zg0OUTEXcBdAJICuDEiftTuwMzMrDqF7laKiE+2KxAzM+sczUxIfxl4a0R8O309kYiIl7cmNDMzq0ozt7Jmb199Wnrc6MPbjlrXWnDOjYzs3OVVW81obs5hMPN6oK3RmJlZR5jSfg5mNrV9IfyshnWLZuYcjilSYUTcPPVwzGYeD1NZN2qm5zBM8vDbZJSW89pKZmZdrpnk4KW3zQpyb8G6XTMT0i1delvSUuCfSHoYH4uIi2quLwMuIFnEbww4MyK+3soYzMxsYqVOSEuaBVwKHAfsADZJ2hARWzPF/gvYEBEh6bnANcCzyozTuku7J3ndC7BeVPZDcEuAbRGxPa17CFgG7EkONTvMPZ3m5jvMzKyFFDHx715JXwHekiaHYSb5ZZ19LqJOXcuBpRFxRnp8CnBURKyuKfenwPuB3wFeFRHfqFPXSmAlQF9f35FDQ0MTtqOo0dFR5syZ09I6u0XVbR/ZuWvP68VzD5zy+UZ1TqRvNvzwqaZDnZaibShD1d/7KvVi2wcHB2+LiP561yZNDq0k6c+BV9YkhyUR8bYG5Y8B1kTEKyaqt7+/PzZv3tzSWIeHhxkYGGhpnd2i6rY3GiYqer5RnRM5a/EYF4+UM9patA1lqPp7X6VebLukhsmh7OUudgDzM8fzgAcbFU6fmfh9SQe3OzAzM9urcHKQdJCk90j6T0lb0s9r0x3jJrMJWCRpoaT9gBXAhpr6D5ek9PUfA/sBjxaN08zMpq5QcpD0POC7wLuA/UkmkvcHzgW+I2nxRF8fEWPAauAm4B7gmojYImmVpFVpsT8DviXpTpI7m14XZY59mZlZ4VtZ/5nkr/j+iHhg/KSkBcAXgI8AAxNVEBEbgY0159ZlXn8A+EDBuMzMrIWKJocXAKdlEwNARNwv6XzgEy2LzGwCfvbArL2Kzjk8SrJfdD0/xXMDZmYzQtHk8FHgnZL2z56UNBs4m2SOwMzMulwzT0i/N3sIHAZ8X9JG4IdAH3AC8BTw6+0I0szMytXMnMPfNzh/ap1z5wFrph6OmZl1gmZWZfW+0GZmPcbbhJp1sE5ZVsN6j3sFZmaWM5XlM1ZKukPSTyT9svajHUGamVm5ii6fcSrJU9CbSJbN+ARwFfA48D3gvY2/2szMukXRnsOZJPssvCU9viwiTgOeSXIrqx+CMzObAYpOSC8CbibZ33k3yYqpRMSPJV0IXAhc0tIIzQrwshpmrVG05/AU8LR0ldSHSXoM40aBQ1sVmJmZVadoz2EEOBz4EvA14FxJ9wFjwFrg2y2NznqeewJm1SiaHNazt7fwbpIk8fX0+AngNa0Jy8zMqlQoOUTEv2Veb5P0h8CLgdnALRHxoxbHZ2ZmFZjWE9IR8STwxRbFYmZmHaJwcpA0i2TRvRcBc4GdwC3ApyLCD8GZNcnzKdbJij4EdxiwBfg4sBT4nfTz5ST7Ph/W8gjNzKx0RXsOlwAHAEdHxC3jJyW9BPgMydPTr25deGa9xz0K6wRFn3N4GfCubGIAiIj/Bs5Nr5uZWZcr2nMYBR5pcO0R4CfTC8e6jZeUNpuZivYcrgJWNbj2ZuDK6YVjZmadoJk9pN+UOfwu8OeSRoDr2LuH9HLgN4DPtyNIMzMrVzPDSh+rc24e8Id1zl8KrJtWRGZmVrlmksPCtkdhM47nIsy626TJISIeKCMQ6w2NbtN0AjHrLFNaPkPSc4Bjgd8i2eDn5oj4VisDMzOz6hRKDpL2Aa4ATgKUuRSSrgZO9xIaZmbdr+itrOcDfwGsIZmLmJ1+XgO8Lv1sZmZdruiw0huACyLiwsy5B4AL0wX53kiSQMzMrIsV7TkcCnyjwbVbaGKbUElLJd0raZukc+pcP1nS3enHLZKeVzBGMzObpqLJ4UHgJQ2uvTi93lDau7gUOB44AjhJ0hE1xe4Djo2I5wIXkOw+Z2ZmJSo6rPRp4DxJu9PXDwGHACuA84APTPL1S4BtEbEdQNIQsAzYOl6gZlG/W0keuDMzsxIpIpovnNytdCVJMsh+oYB/BU6d6G4lScuBpRFxRnp8CnBURKxuUP5s4Fnj5WuurQRWAvT19R05NDTUdDuaMTo6ypw5c1paZ7co0vaRnbv2vF4898BC57OaKVOGvtnww6cqe/sJZf+N2sU/973V9sHBwdsior/etaJ7SI8Br5d0IXAMyXMOjwFfjYitE35xQnXO1c1OkgaBvwSObhDLetIhp/7+/hgYGGji7Zs3PDxMq+vsFkXafnr2SeiTBwqdz2qmTBnOWjzGxSPT2j23bbL/Ru3in/uBqsPoGE3/L5C0H/AwybMMG0h2hCtqBzA/czyPOvMUkp5LsqbT8RHx6BTex2xG8/Ik1m5NT0hHxM+BMeCn03i/TcAiSQvTZLMC2JAtIOn3gM8Cp0TEd6bxXmZmNkVF71a6nmR57ilJh6VWAzcB9wDXRMQWSaskje8TsQb4beAySXdK2jzV9zMzs6kpOrj6eeCfJV1LkigeombOICK+PFEFEbER2Fhzbl3m9RlAbgLarNd5b2krU9HkcF36+bXpx7ggmWwOYFYL4rIe4198Zp2laHIYbEsUZmbWUYreyvpVAEkHAM8B5gI7gW9FxOOtD8/MzKpQ+IZuSWuAs4A57B1KGpX0wYh4X4vjMzOzChTdz+E9wLtJnkEYAn4I9JHs7/AeSftExNpWB2lmZuUq2nP4K+DiiHhn5twW4MuSdpEsZ7G2RbGZmVlFij7ncCDJMwr1fCG9bmZmXa5ocvgf4AUNrr0gvW5mZl2u6LDS24HPSRoDPsPeOYe/AN4ELJO0J+FExO5WBWpmZuUpmhzuTj9flH5kCRjJHMcU6jczsw5Q9Jf3e2mwxLaZmc0cRR+CW9umOMysxbyst02Hh32s7bxukln3KXq3kpmZ9QAnBzMzy3FyMDOzHCcHMzPLcXIwM7McJwczM8txcjAzsxwnBzMzy3FyMDOzHCcHMzPLcXIwM7McJwczM8vxwnvWMl5gz2zmcM/BzMxynBzMzCzHycHMzHKcHMzMLMcT0mZdztuBWjuU3nOQtFTSvZK2STqnzvVnSfqGpJ9JOrvs+MzMrOSeg6RZwKXAccAOYJOkDRGxNVPsMeDtwGvKjM3MzPYqe1hpCbAtIrYDSBoClgF7kkNEPAI8Isn9Y7OC/KyJtUrZyWEu8IPM8Q7gqKlUJGklsBKgr6+P4eHhaQeXNTo62vI6u0WRtp+1eKy9wZSsb/bMaxPQ9PfTP/fDVYfRMcpODqpzLqZSUUSsB9YD9Pf3x8DAwDTCyhseHqbVdXaLIm0/fYb9pXrW4jEuHpl592ncf/JAU+X8cz9QdRgdo+wJ6R3A/MzxPODBkmMwM7NJlJ0cNgGLJC2UtB+wAthQcgxmZjaJUvvPETEmaTVwEzALuDwitkhalV5fJ+kQYDNwALBb0pnAERHxeJmxmpn1stIHVyNiI7Cx5ty6zOuHSYabzMysIjNv5s3McvwUtRXltZXMzCzHycHMzHI8rGTWYzzEZM1wz8HMzHKcHMzMLMfJwczMcpwczMwsxxPSNqnaZaA9iWk287nnYGZmOe45WF3eNMastzk5WGFOHGYzn5ODWQ/zA3HWiOcczMwsx8nBzICkFzGyc5eHDQ1wcjAzszqcHMzMLMfJwczMcny3ku0xPtZ81uIx/KNh1tv8G6AH+fZFM5uMh5XMzCzHycHMzHI8rGRmE/IwZG9yz8HMzHLcczCzHD8lbe45mJlZjpODmZnlODmYmVmO5xx6nMeWzaweJwcza1qjPyZ8i+vM42ElMzPLcc+hwxV9AKlReQ8fWTs1+/PlHkb3KD05SFoK/BMwC/hYRFxUc13p9ROAnwCnR8TtZcfZ6ZpJGk4I1sn85HVnKzU5SJoFXAocB+wANknaEBFbM8WOBxalH0cBH00/97xGv+ydBKxb+Ge1e5Tdc1gCbIuI7QCShoBlQDY5LAOujIgAbpV0kKTfjYiH2hHQVP568dCNWWsV/b/TTG/ZvZHpUfI7uKQ3k5YDSyPijPT4FOCoiFidKXMDcFFEfD09/i/g7yJic01dK4GV6eEfAPe2ONyDgR+1uM5u4bb3rl5ufy+2/bCIeEa9C2X3HFTnXG12aqYMEbEeWN+KoOqRtDki+ttVfydz23uz7dDb7e/lttdT9q2sO4D5meN5wINTKGNmZm1UdnLYBCyStFDSfsAKYENNmQ3AqUq8ENjVrvkGMzOrr9RhpYgYk7QauInkVtbLI2KLpFXp9XXARpLbWLeR3Mr6xjJjzGjbkFUXcNt7Vy+3v5fbnlPqhLSZmXUHL59hZmY5Tg5mZpbj5DAJSWdLCkkHVx1LmSR9UNK3Jd0t6XOSDqo6pnaTtFTSvZK2STqn6njKImm+pK9IukfSFknvqDqmskmaJemO9Dkrw8lhQpLmkyz18f2qY6nAF4HnRMRzge8A76o4nrbKLO1yPHAEcJKkI6qNqjRjwFkR8WzghcBf91Dbx70DuKfqIDqJk8PE/hH4W+o8hDfTRcR/RsRYengryfMmM9mepV0i4ufA+NIuM15EPDS+uGVEPEHyS3JutVGVR9I84FXAx6qOpZM4OTQg6dXAzoi4q+pYOsCbgM9XHUSbzQV+kDneQQ/9ghwnaQHwfOB/Kg6lTB8m+SNwd8VxdJSe3s9B0peAQ+pcOg84F/iTciMq10Ttj4h/T8ucRzLs8OkyY6tAU8u2zGSS5gDXAWdGxONVx1MGSScCj0TEbZIGKg6no/R0coiIV9Q7L2kxsBC4K9legnnA7ZKWRMTDJYbYVo3aP07SacCJwMtj5j8Q09PLtkjalyQxfDoiPlt1PCV6CfBqSScA+wMHSLoqIt5QcVyV80NwTZB0P9AfET2zYmO6KdOHgGMj4n+rjqfdJO1DMvH+cmAnyVIvr4+ILZUGVoJ0g61PAo9FxJkVh1OZtOdwdkScWHEoHcFzDtbIJcBvAF+UdKekdVUH1E7p5Pv40i73ANf0QmJIvQQ4BXhZ+r2+M/1L2nqYew5mZpbjnoOZmeU4OZiZWY6Tg5mZ5Tg5mJlZjpODmZnlODlYz5B0rqTvSxqTdGd67hBJGyQ9lq6+e6ak09PXC6bwHlekz8WMHy+QtFbSM6cY89o0lsjWm14bP/8Pdb5Okran16/KnD8683Uh6fCpxGUzn5OD9QRJS4ALSRbUO4bkvn6ANcCxwF8CL0qv35i+nsre5RcAf5o5XgCcD0wpOWS8qKbecU8AJ6cPsmW9NH3vJ2vO35XW9b5pxmMzXE8vn2E95dnp53URsb3m/F0R8bma8lN6KjwivjeVr2ui3lsbXPoc8AaSBDecOX8q8FWSZWCy9TwB3CrpWW0I02YQ9xysq0k6XNKnJN0n6al0KOWjkn4zU2YYuCI9/F46nHKFpAAGgJdmhlkW1BtWknS/pKskrUg3xXlS0mZJR9fEs2dYKV2O4SvppS9m3mNA0g2Sbq/TnoWSdkt6c5P/BD8gSQLjPSEk7Q8sB65ssg6zHCcH63aHkiyadybwSuC9JOsjbcyUeSvw/vT1a0mGVc5PP98N3JG+nmwo6aXAWcC7gdcBs4AbJtgl73bgr9PXb8+8x+3AZcDz0+GurJUkQ0FXTxBHrSuB5ZJmp8evAfYFri1Qh9mv8LCSdbWIuBm4efxY0i3ANuBrkp4fEXdExFZJ40NJd0TE/enrByQ9AYxlh23yw/d7HAD8UUT8OC33MMkCfSdQ55d5RDwuaWt6eE/Ne3wB2A68Gfhmem5f4I0kK6M+UeCf4VqSXeyWkcyZnApcHxFPTNAWswm552BdTdJ+6V1I35b0FPAL4Gvp5T9o8dt9YzwxpEbSz79XtKKI2A38C7BC0oHp6dcAfen5InWNksw9nCLpEJJ9SDykZNPi5GDd7v3AWuAqkq0el5AMHUGyPn8rPZY9iIifTfN9Pk7yf3B8vmAV8M2IuGMKdV1JkhT+BngE+NIUYzIDPKxk3W8FcGVE7Lk1M93RrONFxKOSPgO8WdJNwCBwxhSr+xJJUjgb+FBE/LJFYVqPcs/But2vkwwlZb2xikAaGO9dzG5w/TLgOSSb2z9OMmdQWDpMdQHwH8DlU6nDLMs9B+t2XwBOkzRCMhH9WuDF1Yb0K75Dsgf3myQ9RpIs7h2fcI6IW9NbWo8BPhIRP5nqG0XEOmBGb8pk5XHPwbrd24ANJE8//xvJ7nUnVRpRRkQ8SrLD3PNInkfYBBxZU2z8ltNCE9Fm7eSd4MwqJum/gd0R8dI619aSPJOxLxCtmEtI98s+lWRCfFFEbJtunTbzeFjJrAKSfg34Y+AVJMNgyyb5kl8AD5CslzSd9z2avbf6mjXknoNZBdKlOe4D/g+4LCLOa1DuUJKnwAF+FhEj9coVeN85QHZdpZHMLblmezg5mJlZjiekzcwsx8nBzMxynBzMzCzHycHMzHKcHMzMLOf/AUnhvY/cOR/uAAAAAElFTkSuQmCC\n",
1469
  "text/plain": [
1470
  "<Figure size 432x288 with 1 Axes>"
1471
  ]
 
1477
  }
1478
  ],
1479
  "source": [
1480
+ "ax = df['affinity'].hist(bins=100,density=True)\n",
1481
+ "ax.set_xlabel('affinity[M]',fontsize=16)\n",
1482
  "ax.set_ylabel('probability',fontsize=16)\n",
1483
  "ax.figure.savefig('affinity.pdf')"
1484
  ]
data/all.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b8ae6ddbbf887ba3fa3fa50c0db3a7ff093728fa8191b6fd5f0effbc94ace023
3
- size 216004661
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d22b80e9d2f1c3db65b792395b10f84dfd367dbe908cfd798aea5a10f1c62cb9
3
+ size 204641362