File size: 6,102 Bytes
434fe63 f1fd211 434fe63 030a380 434fe63 5680ee8 434fe63 88fe72c 5680ee8 7aad16b 88fe72c 434fe63 1c3a7be 434fe63 19d511a db83314 f0f758f db83314 220c3d6 434fe63 8ffbe2c 88fe72c 434fe63 db83314 434fe63 db83314 434fe63 7aad16b fd1b48a 7aad16b fd1b48a 8f150cc fd1b48a 7aad16b 558c2c3 7aad16b 558c2c3 7aad16b 434fe63 16d1b7f db83314 16d1b7f db83314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: A dataset of protein sequences, ligand SMILES and binding affinities."""
import huggingface_hub
import os
import pyarrow.parquet as pq
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {jglaser/binding_affinity},
author={Jens Glaser, ORNL
},
year={2021}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
A dataset to fine-tune language models on protein-ligand binding affinity prediction.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "BSD two-clause"
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/jglaser/binding_affinity/resolve/main/"
_data_dir = "data/"
_file_names = {'default': _data_dir+'all.parquet',
'no_kras': _data_dir+'all_nokras.parquet',
'cov': _data_dir+'cov.parquet'}
_URLs = {name: _URL+_file_names[name] for name in _file_names}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class BindingAffinity(datasets.ArrowBasedBuilder):
"""List of protein sequences, ligand SMILES and binding affinities."""
VERSION = datasets.Version("1.4.1")
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option1": datasets.Value("string"),
# "answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
#else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"seq": datasets.Value("string"),
"smiles": datasets.Value("string"),
"affinity_uM": datasets.Value("float"),
"neg_log10_affinity_M": datasets.Value("float"),
"smiles_can": datasets.Value("string"),
"affinity": datasets.Value("float"),
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
files = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
# These kwargs will be passed to _generate_examples
name=datasets.Split.TRAIN,
gen_kwargs={
'filepath': files["default"],
},
),
datasets.SplitGenerator(
name='no_kras',
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files["no_kras"],
},
),
datasets.SplitGenerator(
name='covalent',
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files["cov"],
},
),
]
def _generate_tables(
self, filepath
):
from pyarrow import fs
local = fs.LocalFileSystem()
for i, f in enumerate([filepath]):
yield i, pq.read_table(f,filesystem=local)
|