File size: 1,973 Bytes
4e3b836
 
 
 
1b1c7d1
25e8851
 
 
 
 
4e3b836
509d849
fdf1d40
1b1c7d1
 
 
4e3b836
 
 
 
 
 
 
1b1c7d1
4e3b836
 
 
 
 
 
1b1c7d1
4e3b836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b1c7d1
4e3b836
 
 
 
 
 
 
 
 
 
1b1c7d1
4e3b836
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
## How to use the data sets

### Use the already preprocessed data

Load the dataset using

```
from datasets import load_dataset
dataset = load_dataset("jglaser/binding_affinity")
```

**Loading the data manually**

The file `data/all.parquet` contains the preprocessed data. To extract it,
you need download and install [git LFS support] https://git-lfs.github.com/].

### Pre-process yourself

To manually perform the preprocessing, fownload the data sets from

1. BindingDB

In `bindingdb`, download the database as tab separated values
<https://bindingdb.org> > Download > BindingDB_All_2021m4.tsv.zip
and extract the zip archive into `bindingdb/data`

Run the steps in `bindingdb.ipynb`

2. PDBBind-cn

Register for an account at <https://www.pdbbind.org.cn/>, confirm the validation
email, then login and download 

- the Index files (1)
- the general protein-ligand complexes (2)
- the refined protein-ligand complexes (3)

Extract those files in `pdbbind/data`

Run the script `pdbbind.py` in a compute job on an MPI-enabled cluster
(e.g., `mpirun -n 64 pdbbind.py`).

Perform the steps in the notebook `pdbbind.ipynb`

3. BindingMOAD

Go to <https://bindingmoad.org> and download the files `every.csv`
(All of Binding MOAD, Binding Data) and the non-redundant biounits
(`nr_bind.zip`). Place and extract those files into `binding_moad`.

Run the script `moad.py` in a compute job on an MPI-enabled cluster
(e.g., `mpirun -n 64 moad.py).

Perform the steps in the notebook `moad.ipynb`

4. BioLIP

Download from <https://zhanglab.ccmb.med.umich.edu/BioLiP/> the files
- receptor_nr1.tar.bz2 (Receptor1, Non-redudant set)
- ligand_nr.tar.bz2 (Ligands)
- BioLiP_nr.tar.bz2 (Annotations)
and extract them in `biolip/data`.

Run the script `biolip.py` in a compute job on an MPI-enabled cluster
(e.g., `mpirun -n 64 biolip.py).

Perform sthe steps in the notebook `biolip.ipynb`

5. Final concatenation and filtering

Run the steps in the notebook `combine_dbs.ipynb`