File size: 3,487 Bytes
f0b1763 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language:
- en
tags:
- clouds
- sentinel-2
- image-segmentation
- deep-learning
- remote-sensing
pretty_name: cloudsen12
---
# cloudsen12
***``A dataset about clouds from Sentinel-2``***
CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge cloud detection algorithms.
CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our paper: CloudSEN12 - a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2.
**ML-STAC Snippet**
```python
import mlstac
secret = 'https://huggingface.co/datasets/jfloresf/mlstac-demo/resolve/main/main.json'
train_db = mlstac.load(secret, framework='torch', stream=True, device='cpu')
```
<p align="center">
<img src="header.png" />
</p>
**Sensor: Sentinel2 - MSI**
**ML-STAC Task: TensorToTensor, TensorSegmentation**
**Data raw repository: [https://cloudsen12.github.io/](https://cloudsen12.github.io/)**
**Dataset discussion: [https://github.com/IPL-UV/ML-STAC/discussions/2](https://github.com/IPL-UV/ML-STAC/discussions/2)**
**Review mean score: 5.0**
**Split_strategy: random**
**Paper: [https://www.nature.com/articles/s41597-022-01878-2](https://www.nature.com/articles/s41597-022-01878-2)**
## Data Providers
|Name|Role|URL|
| :---: | :---: | :---: |
|Image & Signal Processing|['host']|https://isp.uv.es/|
|ESA|['producer']|https://www.esa.int/|
## Curators
|Name|Organization|URL|
| :---: | :---: | :---: |
|Jair Flores|OEFA|http://jflores.github.io/|
## Reviewers
|Name|Organization|URL|Score|
| :---: | :---: | :---: | :---: |
|Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|5|
## Labels
|Name|Value|
| :---: | :---: |
|clear|0|
|thick-cloud|1|
|thin-cloud|2|
|cloud-shadow|3|
## Dimensions
### input
|Axis|Name|Description|
| :---: | :---: | :---: |
|0|C|Spectral bands|
|1|H|Height|
|2|W|Width|
### target
|Axis|Name|Description|
| :---: | :---: | :---: |
|0|C|Hand-crafted labels|
|1|H|Height|
|2|W|Width|
## Spectral Bands
|Name|Common Name|Description|Center Wavelength|Full Width Half Max|Index|
| :---: | :---: | :---: | :---: | :---: | :---: |
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|1|
|B03|green|Band 3 - Green - 10m|560.0|34.0|2|
|B04|red|Band 4 - Red - 10m|664.5|29.0|3|
|B05|red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4|
|B06|red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5|
|B07|red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6|
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7|
|B8A|red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8|
|B09|water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9|
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|
|